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Abstract 
Recovery can be extended to new domains at reduced logging 
cost by exploiting "logical" log operations.  During recovery, a 
logical log operation may read data values from any recoverable 
object, not solely from values on the log or from the updated 
object.  Hence, we needn’t log these values, a substantial saving.  
In [8], we developed a redo recovery theory that deals with 
general log operations and proved that the stable database remains 
recoverable when it is explained in terms of an installation graph.  
This graph was used to derive a write graph that determines a 
flush order for cached objects that ensures that the database 
remains recoverable.  In this paper, we introduce a refined write 
graph that permits more flexible cache management that flushes 
smaller sets of objects.  Using this write graph, we show how: (i) 
the cache manager can inject its own operations to break up 
atomic flush sets; and (ii) the recovery process can avoid redoing 
operations whose effects aren’t needed by exploiting generalized 
recovery LSNs.  These advances permit more cost-effective 
recovery for, e.g., files and applications.   

1 Introduction 

Overview 

There is a substantial literature of recovery algorithms, and a short 
literature on explaining recovery. A recent book [6] captures 
much of this.  Recovery algorithms encompass logging, cache 
management, and recovery itself. Clever algorithms tailored for 
particular system have been invented, e.g. [2,3], evolving to  
"physiological" techniques [4] such as ARIES [11].  Much of this 
has been an attempt to balance the choice of log operation (and 
hence the logging cost) against the complexity of the cache 
management needed to keep the database recoverable. 

Two papers that described the recovery problem in some 
generality and characterized recovery methods are [5,1]. In [1], 
the recovery schemes were classified by the interplay of redo and 
undo recovery.  Closer to our discussion here, [5] classifies 
recovery algorithms, in part, by their impact on cache 
management.  Two characteristics were whether 
 
 
 
 
 
 
 
 
 

1. the entire cache needed to be flushed atomically (ATOMIC 
vs. ~ATOMIC) to the stable state and 

2. a cached object could be removed from the cache at any time 
to permit its portion of the cache to be reused by another 
object (STEAL vs. ~STEAL). 

   
The physiological recovery methods [4,11] have become the 
methods of choice in part because they are (~ATOMIC, STEAL), 
hence maximizing cache management flexibility, while also 
providing high concurrency. Physiological operations are of the 
form X � I�;�, i.e. they transform a single recoverable object.  
For example, inserting a new record on a page, where only the 
new record need be logged, transforms the page from a state 
without the record to one with the record. 
 
In [8], we introduced a general framework for understanding redo 
recovery.  Two factors motivated us.  First, we wanted to explain 
existing recovery technology.  Second, we wanted to generalize 
recovery technology to enable its exploitation in domains other 
than database recovery.  We showed how to exploit more 
powerful log operations in [7] to reduce recovery cost for 
applications.  Our focus here is on redo recovery using logical 
operations that permit cost-effective recovery for new areas like 
applications and file systems.  For this, we need to understand 
how the choice of log operations impacts logging cost, cache 
management, and recovery itself.   

Recovery Opportunities and Problems 
 
It is usually desirable to choose log operations that minimize 
logging overhead during normal operation. Figure 1 illustrates 
how, by logging "logical" operations, to avoid writing large data 
values to the log and contrasts this with the logging cost of 
"physiological" log operations.  In Figure 1(a), logical operation 
A (Y ← f(X,Y)) reads objects X and Y and writes object Y.  Then 
operation B (X ← g(Y)) reads Y and writes X.  These "logical" 
operations can be very efficiently logged.  The log record for A 
(shown next to LOG:) indicates that X and Y have been read by 
making them arguments to f.  Further, Y has been written (it 
precedes the colon, and operation A (i.e. function f) did the 
transformation.   In Figure 1(b), we describe the changes to X and 
Y with "physiological" operations.  These operations must involve 
only a single object.  Thus, when we now log the write of Y 
during operation A, this requires that we write either the value of 
X or the result of f(X,Y) in the log record for operation A.  In the 
former case, our log record for A still indicates that Y has been 
read and written, and that f was the function that did the 
transformation.  Now, however, we see that the value of X at the 
time of the operation has been logged.  This is denoted by log(X). 
This logged value now becomes input to the logged operation A 
on the LOG in Figure 1(b). Similar considerations apply to 
operation B. 



 

In database systems, updates are typically to records on a page, so 
it is convenient to formulate updates as physiological operations 
updating pages.  Databases latch small objects like pages in order 
to facilitate concurrency.  In other domains such as application 
recovery, however, concurrency is often less of an issue.   
Application designers may program in terms of updates to much 
larger objects.  Here, logging logical operations on large objects 
to avoid logging the objects themselves can result in enormous 
savings.  Logging logical operations, however, can have a 
profound impact on cache management and recovery.  The goal of 
this paper is to reduce this impact.  
 
We give some examples of how logical logging can substantially 
reduce the logging required during normal execution. 

Application Recovery: In [7], we provided logical operations 
for recovering application state.  Relating these to operations A 
and B of Figure 1, Y plays the role of application state and X the 
object that is being read and written 

• Application read (R(X,Y)): Application Y reads object X into 
its input buffer, transforming the state of Y to a new state Y ′.  
This application read operation has the form of operation A.  
Using a logical log operation avoids the need to log the value 
of X that is read or the value of Y that is written.   

• Application write (WL(Y,X)):  Application Y writes object X 
from its output buffer.  This does not change application 
state Y. This “logical” application write operation has the 
form of operation B.   Logical writes were not included in [7] 
because of the potential for cyclic flush dependencies. 

• Application execution (Ex(Appl)): An application’s 
execution between database calls is a physiological operation 
Appl = Ex(Appl).  The operation begins when control is 
returned to Appl, its execution transforms Appl's state to the 
new state when Appl next calls the database system.  
Parameters for Ex(Appl) are stored in the log record 

 
Physiological operations cannot achieve the log space savings for 
application reads and writes, as in both cases, the values read 
and/or the values written would need to be logged. 
 
File System Recovery: The forms of logical operation described 
in Figure 1 can also provide recovery for a file system. An 
operation that copies file X to file Y is in the form of operation B.  
This same form describes a sort, where X is the unsorted input 
and Y is the sorted output.  In neither case do we log the values of 
input or output files.  Only the transformations are logged and the 
source and target files id’s. Were physiological operations used, 
we would need to log file Y (or file X) in its entirety. 
 
Database Recovery: Logical logging is also useful in database 
recovery.  Operations of the form of operation B of Figure 1(a) 
can be used in B-tree splits, i.e., to copy half the contents of a full 
B-tree page to a new page.  X denotes the old page and Y the new 
page.  The split operation moves keys greater than the split key to 
the new page.  A logical split operation avoids the need to log the 
contents of the new B-tree node, which is required when using the 
simpler physiological operation for B of Figure 1(b).    
 
The key to logging economy from using logical operations in new 
recovery domains is logging the identifiers of the sources of data 
values instead of the values.  Since many operations have large 
operands, page size or larger, logging a source identifier that is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Logical (a) and physiological (b) operations needed 
to accomplish the same result for operations A and B.  
 
unlikely to be larger than 16 bytes is a great saving.  Both 
application state and files may be many pages in size. 
 
Our obligation when taking advantage of the logging economy of 
logical log operations is to ensure that the values of the data 
sources needed during recovery are the same as were present 
during the original execution.  This complicates cache 
management and is the price we pay for logging efficiency.  Thus, 
in our example of Figure 1(a), once A is executed, a flush order 
dependency exists to ensure that A's result Y is flushed prior to 
any subsequent change to X being flushed.  If an updated X were 
flushed first, we could not replay A to regenerate the correct value 
for Y were the system to crash and require recovery.   
 
Flush order dependencies can require the atomic flush of multiple 
objects.  For example, atomic flushing (propagating) was a 
requirement of IBM’s System R [3]. While we might restrict 
operations to write only one object (but allow reading other 
objects), this does not avoid the problem.  In Figure 1(a), once B 
is executed, and before its output X is flushed, we must prevent 
any modification to B's input Y in order for B to be replayable.  
However, operation A requires that Y be flushed before X.  Only 
flushing X and Y together atomically satisfies both dependencies, 
because then there is no need to replay one operation after the 
other 's updates have been flushed.   
 
Media recovery using database backups is a further complication.  
A backup needs to be recoverable just as the stable database is in 
order for media recovery to succeed.  However, backups are 
usually asynchronous with normal execution (a fuzzy backup).  
Copying the database to the backup can introduce flush order 
violations for the backup even when cache management honors 
flush order for the stable database.  We describe how such 
backups can be kept recoverable in [10]. 

Paper’s Contribution 
 
Our goal is to show that recovery based on log operations like 
those in Figure 1(a) is very advantageous. The recovery system 
can choose from a wider class of operations, logical operations as 
well as physiological.   It can decide whether the cost of writing 
large objects to the log should be the principal concern, hence 
justifying logical operations despite more difficult cache 
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management.  It might also decide that the objects involved are 
not so large as to justify more complex cache management, and 
hence choose physiological operations.  The wider choice of 
forms of log operations permits cost effective recovery for new 
domains, where recoverable objects can be much larger than is 
usually the case for database systems.  
 
Our focus is on the cache management and recovery costs and 
complications resulting from logical log operations.   The paper 
introduces a fundamental new insight in how to install operations 
that permits more flexible cache management.  It then introduces 
two additional innovations exploiting this so that (i) the cache 
manager can cope with logical operations, and (ii) recovery 
processing can be optimized. 
 
New Write Graph 
 
Flush dependencies are captured in a write graph [8], defined in 
Section 3.  Objects associated with a write graph node must be 
flushed atomically.  A well formed write graph is acyclic to 
impose a flush order on cached objects.  When a cycle arises, we 
“collapse” the nodes involved into a single node which will have 
multiple objects associated with it. The I/O overhead and system 
interruption of multi-object atomic flushing makes this costly. 
 
Restricting logged operations can ensure that it is unnecessary to 
flush more than one object at a time.  Physiological operations 
avoid all flush dependencies. In [7], application operations update 
only one object and logical log operations only describe 
application reads. This prevents write graph cycles, but require 
application write operations be logged as physical operations.  So 
logging cost is low for application reads, but an application write 
log record includes the data value to be written.  This is costly 
when objects are large, e.g. files. 
 
With the write graph of [8], if the cache manager ever determines 
that two objects x and y are associated with one write graph node, 
then they must be flushed atomically when they are next written 
to disk.  In this paper, we show how subsequent updates make it 
possible to relax this atomicity and flush them separately if they 
are flushed in the right order. We capture this relaxation in terms 
of a new refined write graph rW.  The fundamental insight is that 
subsequent updates can cause the value of x to become unexposed 
(i.e., subsequent updates do not need to read x to compute its next 
value) and not have to be flushed 
 
 
 Innovations 
 
Cache Manager Initiated Writes 
 
The cache manager (CM) can introduce operations that break up 
atomic flush sets by making object values unexposed, so that they 
do not need to be flushed to install earlier operations.   These 
"identity" operations do not change the objects involved but result 
in logging activity that makes separate flushing possible.  Each 
operation is a physical write that saves the value (state) of an 
object in a log record.  This has a lower cost and less impact on 
system operation than atomic flushing.  The result is that the 
recovery system can permit logical operations that are flexible 

and efficient without fear that the overhead of atomic flushing 
will undermine system performance or concurrency. 
 
Generalized Recovery LSNs 
 
With rW, it is sometimes possible to reduce the number of 
operations that require redo recovery without flushing all their 
updated objects to the stable database during normal execution.   
This can be exploited to optimize recovery, which is especially 
important when the logged operations are expensive to re-execute, 
e.g., applications [7]. This is accomplished by using recovery 
LSNs (rLSNs) [11] in our more general setting with logical 
operations, and based on how we install their effects.  An object's 
rLSN identifies the earliest log record needed for its recovery.  
Logical operations can make determining the rLSN rather subtle. 

Paper Organization 
 
In the next section, we present a simplified version of the 
recovery framework of [8] to reduce the framework description to 
manageable size.  We define installation graph, exposed objects, 
explainable database state, and recoverable database.  We show 
how log-based recovery systems can be understood in terms of 
these notions. The definitions and theorems have been extended 
from what was in [8] to clarify the definition of exposed objects, 
which we exploit in the current paper. 
 
Section 3 discusses how to translate from the installation graph 
ordering operations to a write graph ordering object flushes.  We 
then introduce our new write graph rW that improves on the write 
graph W of [8] by exploiting the fact that unexposed objects need 
not be in an understandable state for recovery to succeed. This 
lets us remove objects from atomic flush sets, and ultimately to 
flush objects one at a time. 
 
We discuss how the CM can exploit rW to break up atomic flush 
sets in section 4.  It does this by introducing operations of its own 
(identity writes) and interjecting them into the stream of 
operations that are recoverable.  We compare this to the logging 
cost and concurrency difficulties of a multi-object atomic flush.  
 
A side effect of the refined write graph is that we can sometimes 
"install" operations without flushing their results to the stable 
database.  We can exploit this to optimize recovery processing, 
shortening the recovery log scanned and reducing the number of 
operations that need to be redone.  We describe this in section 5.  
 
Finally, we summarize the results of our efforts in section 6. 

2 Recovery Framework 
 
Installation is the fundamental recovery concept.  Pragmatically, 
an installed operation is one that no longer needs to be re-
executed in order to recover the stable database state.  An 
operation is usually installed by writing to the stable state (disk) 
the objects it changes to include the operation’s effects in the 
stable state.  We call the writing of changed objects to stable state 
flushing.   
 



 

We simplify the recovery framework of [8] by collapsing the 
notions of update, redo, and operation into the single notion of 
operation.  The original framework permitted an operation to 
consist of several updates, each atomically installed.  Here, we 
restrict operations to a single update.  Note, however, that while 
we simplify the description, the techniques should nonetheless be 
applicable in the fully general setting. 
 
We make common assumptions about the recovery system.  The 
write-ahead log (WAL) protocol is followed in which all changes 
in stable system state must be described by operations on the 
stable log before the changes caused by the operation are 
"installed".  Further, we assume that the redo recovery process is 
ARIES-like in that we “repeat history”.  Operations on the log are 
assumed to be in conflict order.  Note that we do not require that 
operations on the log be totally ordered, as conflict order is not a 
total order. 

Installation Graph 
 
The basis for the recovery framework is an installation graph. It 
constrains the order in which changes made by operations can be 
made part of the stable database state, and provides a way of 
explaining what operations can be considered installed. This 
graph uses edges to order operations, like the conflict graph, but 
installation ordering is much weaker.  If, after crash, the state can 
be explained in terms of this graph, then we can recover by 
selectively "replaying" logged operations.  The installation graph 
restricts when objects can be flushed.  It lets us construct a cache 
management algorithm that guarantees that the stable state 
remains explainable, and a recovery algorithm that recovers any 
explainable state. Thus, it captures the impact of the choice of 
logged operations on the recovery process. 
 
Our installation graph is a graph whose nodes are operations and 
whose edges constrain the order in which the operations are 
installed.  It is obtained from the conflict graph by keeping all 
read-write edges, throwing away all write-read edges, and 
keeping only some write-write edges.  We thus define the 
installation graph for a history H (or conflict graph) with 
operations H as a directed graph where each node is labeled with 
an operation O.  An operation O is characterized by the objects it 
reads (readset(O)) and the objects it writes (writeset(O)).  For 
distinct operations O and P, there is an edge from O to P if O < P 
in H and either 
1. read-write edges: readset(O) �writeset(P) �� . 

Here, a later operation updates an object read by an earlier 
operation.  If P’s updates are posted to the stable database, 
but a crash prevents O’s from being posted, then O must be 
replayed to produce the missing effects, but cannot because 
readset(O) has changed.  Hence, the database will not be 
recoverable.   

2. write-write edges: P is in must(O) but not in can(O). The 
operations of must(O) must be recovered by re-execution 
should writeset(O)  be reset by redoing O, because some of 
their updates will be reset.  The operations of can(O) are 
those that can be recovered as a result of recovering only 
operations in must(O).  See [8] for precise definitions.  
Write-write order is usually not violated during normal 
execution as we only write the latest state, but it can pose 
difficulties during recovery.  Recovery deals with incomplete 

information.  Whether a reset violates write-write order may 
be unknown.  One strategy is to log only operations for 
which write-write edges do not arise.  A second strategy, 
which we pursue here, never resets state during recovery, 
and hence write-write order will not be violated. 

Explainable States 
 
For recovery to be feasible, we must understand the stable system 
state after a crash in terms of what operations have their effects 
already present (installed) in the stable system state and what 
operations do not (uninstalled).  During recovery, certain 
important objects must contain correct values.  We define a set I 
to be a prefix set if for every operation O in Ι, I contains every P 
< O (in installation order) of H.  An object x to be exposed by a 
prefix set Ι  iff one of the following conditions is true: 
1. no operation in H - I reads or writes x, or 
2. some operation in  H - I reads or writes x, and the minimal 

operation (earliest in conflict order) reads x. 
 
A prefix set I of operations in H explains state S if for every 
object x exposed by Ι, the value of x in S is the value of x after the 
last operation (in conflict order) of Ι.  We call the operations in I 
installed operations, while the operations in H - I are uninstalled 
operations (for this explanation). Thus, if S is the state of the 
stable database at the start of recovery, then the sequence of 
operations that created S is unimportant. Only the set of 
operations considered installed in S is important. This is crucial, 
as it is impossible in general to determine the exact installation 
sequence that leads to a database state.   Indeed, it may be 
possible to explain S with several different sets of installed 
operations.   

Minimal Uninstalled Operations 
 
An operation O is applicable to a state S at recovery time if for 
every object x in readset(O), the value of x in S is given by O's 
before image.  This means that O reads the same values during 
recovery as it did during normal operation, so it will write the 
same values as well. We can install O by setting every object x in 
writeset(O) to its after image produced by O.  An operation O is 
installable in a state S if the database state S’ = SO obtained by 
installing O in S is explainable by a prefix of the installation 
graph.  We can extend these definitions to sequences of 
operations in the obvious way.  A prefix set I can be extended by 
an operation O if there is no write-write edge from O to any 
operation in Ι and I contains all P < O.   We define extend(Ι,O) as 
deleting every operation in must(O) from Ι, and then including O. 
This is the result of removing all operations that O de-installs, and 
then making sure that O's effects are present.    
 
An explainable state can be recovered by installing uninstalled 
operations in installation order, starting from a minimal 
uninstalled operation, i.e., one with no uninstalled installation 
predecessors.  Thus, we have: 

Theorem 1: Let S be a state explainable by a prefix set I.  If O 
is a minimal uninstalled operation of H - I, then O is 
applicable to S and extend(Ι ,O) explains SO, so O is installable 
in S. 



 

System Recovery 

 
Theorem 1 suggests how to recover an explainable state: choose a 
minimal uninstalled operation O, install it, and repeat. Of course, 
O must be on the log. Informally, a stable state is recoverable if it 
is explainable and the log contains the uninstalled operations. A 
database D consists of stable state S, a log L, and a history H.  It 
is explainable if there is a prefix set I of the history H such that I 
explains S and operations in H - I are on the log L.   
 
Procedure Recover(D,Ι) in Figure 2 recovers a database D 
explained by a Ι.  The algorithm considers all operations O in log 
order, and then invokes a test REDO(D,Ι,O) to determine whether 
O should be installed into the state S of  database D.  The 
recovery task of the CM is to guarantee that there is always at 
least one I that explains S.  The task of Recover(D,Ι)  is to ensure 
that operations replayed during recovery preserve at least one I 
that explains the recovering state S.  
  
RREEDDOO(D,Ι,O) must return true if O is a minimal uninstalled 
operation of  I.  In this case, Theorem 1 guarantees that O is  
applicable and installable.  It can be hard to tell that an operation 
is uninstalled in I, so a recovery method may end up redoing 
operations already installed in I.  In fact, whenever O is 
applicable and installable, it is okay for the test to return true.  
Hence, RREEDDOO(D,Ι,O) satisfies:  
• Safety: If it returns true, then   

• O is applicable to S, and  
• there are no write-write edges from O to operations in I     

• Liveness: It returns true if O is a minimal uninstalled 
operation of Ι 

No recovery algorithm actually maintains Ι.  However, Ι  is only 
used when evaluating RREEDDOO(D,Ι,O).  Cache management will 
guarantee that there is at least one explaining Ι at the time of a 
crash.   We need to design a satisfactory REDO.  We can then 
prove that the invariant "D is explained by Ι " holds after each 
step of Recover(D,Ι), and conclude that an explainable database is 
recoverable.   Of course, designing an effective REDO test and 
proving that the test satisfies the preceding requirements based on 
the explanations that it identifies is non-trivial.   

Theorem 2: If database D is explained by I, then Recover(D,Ι ) 
is an idempotent recovery process that recovers D. 

 
 
procedure Recover(D,Ι ) 

while the log L is not empty do 
choose a minimal operation O in the log L 
if REDO(D,Ι, O) then 

execute (redo) O 
flush writeset(O) to S,  
replace Ι with extend(Ι,O)  
delete O from the log L 
end then 

end do 
end proc 

 
Figure 2: Recovering a database D explained by prefix sets of 
installed operations contained in ΣΙ . 

 
So the recovery task is clear.  We need a CM that guarantees there 
is an I that explains the stable state S.  And we need a recovery 
process that can correctly identify an I that explains S so that as 
the log is scanned, the REDO test causes the execution of the 
appropriate operations.  Section 3 addresses cache management, 
section 4 the REDO test. 

3 Write Graphs 

Background 
A cache manager divides volatile state into a ‘‘dirty’’ part and a 
‘‘clean’’ part (not discussed here).  An object enters the dirty 
volatile state when an operation updates it, can be the subject of 
multiple updates while there, and leaves the dirty volatile state 
upon being flushed to the stable database.  Traditionally, a 
database CM recovers database pages and tracks cached pages in 
a page table.  We abstract that to an object table as we apply 
recovery to more than just pages. Objects of the dirty volatile 
state are written to the stable database for two reasons.  First, the 
volatile state can be (nearly) full, requiring that objects currently 
present be removed to make room for new objects. Second, it may 
be desired to shorten recovery by checkpointing, i.e. truncating 
the stable log.  Only installed operations can be removed from the 
log, so it may be necessary to install some operations before log 
truncation.  Systematic installation permits a prefix of the log to 
be truncated while preserving stable system state recoverability, 
which requires that the log contain all operations that are 
uninstalled in some explanation of the stable state. 
 
The duty of the CM is to ensure that there is always at least one I 
that explains the database D.  Thus, during normal operation, the 
CM can focus on the I that is the "leading edge" set of installed 
operations, and ensure that this set will always explain D.  (The 
situation is more complicated during recovery.) 
 
The CM’s central problem is that installation graph nodes are 
operations but the CM writes objects. The CM must write objects 
so that operation atomicity and installation order are honored.  It 
computes a write graph for this purpose.  Each write graph node v 
has an associated set ops(v) of uninstalled operations that are 
maintained as part of volatile state and a set vars(v) of the objects 
(variables) these operations write. There is an edge from v to w in 
the write graph if there is an installation edge from any operation 
P in ops(v) to any operation Q in ops(w).  
 
The operations of ops(v) are installed by flushing the last values 
written to the objects of vars(v) and vars(v) is written atomically 
in order to guarantee operation atomicity and installation order 
within v.  The vars(v) sets must be flushed in write graph order to 
guarantee installation order. (Physiological operations result in a 
degenerate write graph, each node of which is associated with the 
operations that write to a single object, and with no edges 
between nodes and hence with no restrictions on flush order.) 

The installation graph is the gold standard for explaining and 
controlling installation of operations. Write graphs are derived 
from the installation graph to expedite cache management. Many 
write graphs are possible.  For example, a single node write graph 
that requires atomically flushing the entire cache is sufficient to 



 

ensure recovery (though it is rarely necessary).  It should be clear 
that the more “refined” the write graph is (i.e., the more nodes 
into which the uninstalled operations can be divided) the more 
flexibility the cache manager will have. The write graph W of [8], 
which we describe next, is also sufficient and will usually consist 
of more than one node.  It too, however, is often not necessary.   
 
procedure WriteGraph(In) 
   T ← the transitive closure of O ~ P 
     iff writeset(O) ∩writeset(P) ��  for operations labeling  

nodes of In 
  V ← collapse In with respect to the equivalence classes of T  
  S ← the strongly connected components of V  
  W ← collapse V with respect to the equivalence classes of  

nodes in S 
  return(W)   /* collapsing V made W acyclic */ 
  end proc 
 

Figure 3: Computing the write graph W. 

 
procedure PurgeCache 
   compute the write graph W from the operations in the cache 
   choose a minimal node v in W  
   if operations in ops(v) are not already on the stable log then 
      write a conflict graph prefix of operations in the volatile  
         log buffer that include ops(v)  to the stable log in conflict   
         order (WAL protocol)  (this adds the operations to the  
         stable history)  
      delete the conflict graph prefix of operations from the  
        volatile log buffer that were written 
      end then 
  atomically write values of objects in vars(v) to the stable  
      state  
  remove v from W 
  delete objects in vars(v) from the dirty cache 
  delete ops(v) from the cache 
  return 
  end proc 
 
Figure 4.  The cache purging algorithm PurgeCache. 

W is computed by WriteGraph(In) from the subgraph In of the 
installation graph determined by operations in the cache that are 
uninstalled in the stable database (operations in H - I for the set I 
that explains the stable state).  This algorithm uses the idea of 
collapsing a graph A with respect to a partition  of its nodes.  
Each set of the partition represents objects that must be written 
atomically. The result is a graph B where each node w 
corresponds to a class πw in the partition .  An edge exists 
between nodes v and w of B if there is an edge between nodes a 
and b of A contained respectively in πv and πw.  This idea is used 
twice in computing the write graph, once to collapse intersecting 
updates, and again to make the write graph acyclic.  Only acyclic 
write graphs specify a feasible flush order.  In [7] we showed how 
to dynamically compute W for the application operations 
described there. Here we describe the computation of a complete 
W from the set of uninstalled operations maintained in a cache. 
 
When the CM uses an algorithm equivalent to PurgeCache in 
Figure 4 to write to the stable state during normal execution, the 

recoverability of the stable database is preserved.  To prove this 
requires that we show that for stable state S explainable by Ι, that 
invariant Inv is preserved, where Inv is defined to be "Inv(I) is rue 
for some I”. 
 
Invariant Inv(I ): for every operation O in the cache: 
1. there are no write-write edges in the volatile history’s 

installation graph from O  to operations in I,   and 
2. every operation P < O (in conflict order) is in Ι or in the 

cache. 
3. If operation P is in the cache and Q will be reset by installing 

O, i.e. Q is in must(O), and Q < P in the installation graph 
for the volatile database, then Q is in the cache and there is a 
path of write-write edges from O to Q in the write graph.  

 
The first two conditions let us prove that I  can be extended by O 
when we finally install O in the stable database.  The last 
condition ensures that if installing O deletes an operation Q from 
I , and hence could possibly violate the second condition requiring 
that all Q < P are in I  or in the cache for all P in the cache, then Q 
must be in the cache (and hence will be (re)installed with or after 
O).  When O is a minimal uninstalled operation in the volatile 
state, these conditions imply that I  can be extended by O.  So 
Theorem 1 says that installing O in the stable state will yield an 
explainable state. 
 
Three lemmas (given later when discussing rW, and with proofs 
in the appendix) show that PurgeCache, both during normal 
operation and during recovery, correctly installs operations when 
Inv holds, and that its execution preserves invariant Inv.   We thus 
have: 
 
Theorem 3: PurgeCache preserves the invariant Inv and hence 
the recoverability of the stable database. 

Capturing a More Precise Flush Ordering 

 
Consider Figure 5 where X and Y need to be flushed together 
atomically in W after operation A.  Despite this, after operation B, 
we can safely flush Y when no uninstalled operations read the 
value of X written by A.   We recover X by replaying operation B, 
whose log record tells how to recreate it from the value flushed to 
Y.  Hence, recovering X does not depend on the replay of A.  We 
don’t care what value A wrote to X because it isn’t read by 
subsequent uninstalled operations; i.e. it is unexposed.    
 
 
 
 
 
 
 

 

 

Figure 5: An example showing that a more precise flush order 
is possible than what is captured in W. 

 

Operations 

Op B 
X ← g(Y) 

LOG: 
X←g(Y) 

Op A 
X,Y ←f(X,Y) 
LOG: X,Y← 

f(X,Y) 

Time 



 

For a node n of W, |vars(n)| is monotonically increasing, resulting 
in ever larger atomic flushes, until vars(n) is finally flushed. We 
can do better by exploiting objects that are not exposed.  We alter 
the initial transitive closure that generates T (see Figure 3) to 
construct a refined write graph rW.  The earlier construction of T 
lost information that can keep nodes in rW from coalescing, 
resulting in more nodes with fewer objects per node. 
 
To ease exposition, we introduce some notation (Table 1 has the 
complete set). The set of objects written by operations in ops(n) 
of a write graph node n is Writes(n), the set read is Reads(n).  The 
value written by the last update to object X by an operation in 
ops(n) is Lastw(n,X). X will be exposed should a subsequent 
operation in another write graph node read Lastw(n,X).  
 
Two salient differences between W and rW are: 
• In W, vars(n) = Writes(n).  In rW, not all objects in Writes(n) 

need be in vars(n).  Nonetheless, we install all operations in 
ops(n) by flushing vars(n). 

• There may be extra edges between nodes n and m in rW to 
ensure that certain objects are not exposed or that operations 
in must(O) always follow O in the write graph, and these 
need not be installation graph edges between operations in 
ops(n) and ops(m) (required for graph W). 

 
Figure 6 shows how rW is incrementally constructed from the 
uninstalled operations by including them in conflict order.  When 
presented with a new operation Op, we must assign it to a node m 
of rW. Node m may be new or be formed by merging nodes n 
whose exposed updated objects (vars(n)) overlap with objects 
both written and read by Op., i.e. exp(Op).  Objects in notexp(Op) 
are not exposed immediately before Op executes.  Objects in 
exp(Op) have updates that depend on their previous values and 
hence are unavoidably “exposed”.  They must be flushed at the 
same time as objects written by operations that updated them 
earlier.  Each X in writeset(Op) becomes a member of vars(m). 
 

Operations   
Ex(A) Application Execute: reads and writes A 
R(A,X) Application Read: reads A,X and writes A 
WP(X,v) Application Physical Write: writes X with v 
WPL(X) Application Physiological Write: reads and writes X 
WL(A,X) Application Logical Write: reads A, writes X 
WIP(X,val(X)) CM Identity Write of X with its current value 
Operation  Op Attributes 
readset(Op) Read set of operation Op 
writeset(Op) Write set of operation Op 
notexp(Op) ‘‘not exposed" objects of Op =  

(writeset(Op) – readset(Op)) 
exp(Op) “exposed” objects of Op =  

(writeset(Op)  readset(Op)) 
Write Graph  Node n Attributes 
ops(n) Set of operations associated with node n 
vars(n) Subset of Writes(n) flushed to install ops(n) 
Reads(n) ∪ {readset(Op)|  Op in ops(n)} 
Writes(n) ∪ {writeset(Op)|  Op in ops(n)} 
Notx(n) (Writes(n) – vars(n)), the “not exposed” objects of n 
Lastw(n,X) Last value or SI of X written by an operation of ops(n) 
W Write graph of [8] 
rW Refined write graph 

Table 1: Introduced notation 

 

Only objects in notexp(Op) can also occur in vars(p) for any other 
node p and we remove them. Thus, each X is a member of only 
one vars(p) for all p.  These “blindly” updated objects can now be 
recovered independently of their earlier values.  Note that there 
may now be operations in ops(p) that have write-write conflicts 
with Op.  Hence, rW may have write-write edges to ensure that 
operations in must(op) are installed after op is installed, for every 
op.  This preserves part three of the cache invariant Inv(I). 
 
We must ensure that objects X in Notx(p) are not exposed when 
we flush vars(p) to install ops(p).  The value Lastw(p,X) for X in 
Notx(p)  is not needed for the subsequent update of X but might be 
needed by operations in another node q that has operations that 
read X.   For this, we define edges to p from each node q with an 
operation in ops(q) that reads Lastw(p,X).  In rW, we call this 
edge an inverse write-read edge because it is from a later reader 
to an earlier writer.    Hence, objects in Notx(p) need not be 
preserved by flushing as any operation that depends on these 
variables has already been installed before p is installed.  
 
Procedure addop_rW is invoked as operations arrive at the CM.  
This procedure is an approximate substitute for the first collapse 
in the procedure of Figure 3 for constructing W.  Should cycles 
arise as a result of addop_rW, we exploit a second collapse, as 
was done for the construction of W, to make rW acyclic.  
 
Since we now have an incremental construction for rW, we need 
to also make explicit how operations are removed from rW.  A 
node n of rW is removed when ops(n) are installed via flushing 
the objects in vars(n) when n has no rW predecessors.  Removal 
of n removes all its edges.  This never results in new cycles. 
Hence, we can remove a node from rW with W’s PurgeCache. 
 
procedure addop_rW(rW,Op))   
  /* the incremental version of  the first collapse for rW  */ 
  create m in rW by merging nodes n in rW for which  

vars(n) �H[S�2S����     
    ops(m) = ops(n) 8 {Op}  
    vars(m) = vars(n) 8  writeset(Op) 
    edges(m) = { edges(n)} �8�/* new read-write edges */�
����������������{ <p,m> | Reads(p) �ZULWHVHW�2S����� ` 
for  each p ≠ m of rW  with vars(p)  �QRWH[S�2S�� �� ��do 
     /* remove “not exposed” objects from vars of other nodes */ 
      vars(p) = vars(p) - notexp(Op) 
      Notx(p) =  Writes(p) – vars(p)  
      /* Op in must(op) for an op in ops(p), a write-write conflict  */  
       include edge <p,m> in rW   
      for each node q ≠ p of rW do  
        if op ∈ ops(q) reads Lastw(p,X), X ∈ (Notx(p) �QRWH[S�2S��� 
          then 
            /* include “reverse” write-read edge to ensure that Notx(p)  
                is not exposed when node p has no predecessors */ 
            include edge <q,p> in rW  
            end then 
        end do 
      end do 
    end proc 

 
Figure 6: Computing the refined write graph incrementally 
using addop_rW. 



 

The correctness of rW follows from three lemmas that we alluded 
to before when discussing W.  We state the lemmas here.  Their 
proofs, which apply equally to W and rW, are given in [9].  
  
Lemma 1: Suppose the database satisfies Inv(I). If v is a 
minimal node of the write graph, then I can be extended by 
any ordering T of the operations in ops(v) consistent with the 
conflict ordering, and hence extend(I,T)  is defined. 
 
Lemma 2: Suppose the database satisfies Inv(I), which implies 
that I explains the stable database.  If v is a minimal node of 
the write graph and T is an ordering of the operations in 
ops(v) consistent with conflict order, then extend(I,T) explains 
the stable database obtained by writing the objects in vars(v)  
to the stable database. 
 
From these two lemmas, we know that the new state of the stable 
database is explained by the operations that we have installed via 
flushing vars(v).  It remains to be established that the invariant is 
preserved, which essentially tells us that what is in the cache is 
acceptable for continuing recovery going forward. 
 
Lemma 3: Suppose the database satisfies Inv(I).  Let v be a 
minimal node of the write graph and T be some ordering of 
the operations in ops(v) consistent with the conflict ordering, 
and let I’  = extend(I ,T).  Then the database obtained by 
writing the objects in vars(v)  to the stable database satisfies 
Inv(I’ ).   
 
Then PurgeCache will, when using rW, keep the stable database 
recoverable because Theorem 3 is true for rW as well as for W. 

4 Cache Management 

Multi-object Flush Sets 

There is no guarantee that |vars(n)| = 1 for n in rW.  As seen in 
Figure 7, multiple objects written by one operation, at least 
temporarily, are in one atomic flush set.  Node 1 of rW initially 
has a flush set vars(1) = {X,Y}.  Only after operation C is 
|vars(1)|= 1.  For W, C is always added to ops(1).   

Even when all operations write only single objects, cycles can 
arise in rW.   Consider the sequence (a) Y = f(X,Y); (b)  X = g(Y), 
(c) Y = h(Y).  Operations (a) and (b) initially are in separate rW 
nodes with Y preceding X in flush order.  When operation (c) 
updates Y, X must be flushed before Y with its new value is 
flushed.  Thus, a cycle involving rW nodes with objects X and Y 
has formed.  Cycles are collapsed into a single node, bringing 
together objects, previously in separate flush sets, into a multi-
object flush set for the resulting node.  Note that operation (a) has 
the form of an application read, (b) of an application write, and 
(c) of an application execute.  Hence, these application recovery 
operations can potentially lead to cycles that collapse to nodes 
with multi-object flush sets.  
 
Cycles arise even more often in write graph W.  The CM in [7] 
did not have to deal with cycles in W because we precluded 
logical write operations like operation (b).   Instead of logical 
writes, we introduced physical writes X = g(logged(Y)), where the 
value for X is read from the log record.  With that restriction, no 

cycles arose.  This was fortunate, as W’s atomic writes sets never 
shrink. 

As indicated in the example of Figure 7, and unlike with W, a 
subsequent operation may remove objects from a multi-object 
atomic flush set in rW, reducing it in some cases to a single 
object.  Two questions arise.   

1. How do we know that such an operation will be 
forthcoming?  Operations have their origin in applications 
that are outside of the control of the recovery system. 

2. How long do we wait for such an operation?  Even if such an 
operation eventually arrives, as with temporary files being 
deleted, effective cache management is all but impossible. 

 
This is highly unsatisfactory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The write graphs rW and W that result when an 
object becomes non-exposed by a subsequent operation.  W 
has a single node for X and Y and requires the atomic flushing 
of both.  However, rW has separate nodes for X and Y and the 
non-exposed object X has been removed from vars(1). 
 

Op A 
X,Y ←f(X,Y) 

LOG: X,Y← f(X,Y) 

(a) Operations 

Op C 
X ← h(Y) 

LOG: X←  h(Y) 

Time

Op B 
Z← g(X) 

LOG: Z←  g(X) 

(b) Write Graph W after op C 

ops(1) = A,C 

vars(1) = X,Y 
Writes(1) = X,Y 

C writes into 
readset(B) 

ops(2) = B

vars(2) = Z 
Writes(2) = Z 

(c) Write Graph rW after C 

C writes into 
readset(A) and 
readset(B); 
writeset(A) overlaps 
writeset(C)  

Inverse W-R, 
B reads version 
of X from A 
not exposed by 
C’s write 

ops(3) = C 

vars(3) = X 
Writes(3) = X 

ops(2) = B 

vars(2) = Z 
Writes(2) = Z 

ops(1) = A

vars(1) = Y 
Writes(1) = X,Y 



 

Cache Manager Initiated Writes 
 
The cache manager can, via its own actions, cope with n having 
|vars(n)| > 1 without needing to atomically flush multiple objects. 
It initiates an identity write WIP(X) on an object X in vars(n).  
WIP(X) ‘‘writes" the object without changing it and is logged as a 
physical operation by writing the value of X to the log.  This 
produces a new node m with ops(m) = {WIP(X)} and vars(m) = 
{X}. Importantly, it removes X from vars(n).  No cycles are 
introduced as m will follow other nodes in rW.  It does not 
precede any as Reads(m) is empty, meaning that WIP(X) has no 
installation graph successors.   
 
We can repeat this with additional identity writes, until |vars(n)| 
= 1.  Once n has no predecessors, the single object can be 
atomically flushed, installing the operations of ops(n).  This 
works for any node n with |vars(n)| > 1, and hence works with 
arbitrary log operations.  Although only a single object is flushed, 
all operations of ops(n) are installed.  (Indeed, we can even reduce 
|vars(n)| to zero.)  Subsequent values for the objects in Notx(n), 
which are not flushed, can be recovered from the log. 
 
Flushing both installs operations and makes the flushed objects 
clean (version in the stable state is the same as the cached 
version).  Installation alone does not make stable database and 
cached versions the same..  Thus, install and flush of an 
unexposed object leaves that object dirty in cache.  The cached 
version has been updated by an operation that follows the 
operations being installed.  In Figure 7, operation C has updated 
the cached value of X and this value continues to be needed after 
node (1) is installed. The cached value has not been flushed and 
so is not available from the stable database.  Therefore, we 
continue to require that an object be clean before it can be 
dropped from the cache to protect our ability to access the latest 
version of the object, which is needed when subsequent 
operations read the object.   
 
We have resorted here to logging physical writes to effectively 
manage the cache when |vars(n)| > 1.  However, previously, 
when avoiding flush cycles by precluding logical writes, all writes 
were physical.  Now, we log physical writes only for multi-object 
atomic flush sets.  Even then, we can avoid the need to log at least 
one object of the set with a physical write.  Further, we enable 
multiple updates to accumulate in each object before we log or 
flush it.  Hence, as is common in database systems, the cost of 
flushing (and logging) the object is shared among the several 
updating operations, a substantial saving. 

Atomic Flush 
 
It is possible to accomplish atomic flushing of objects in a couple 
of different ways.  So, one might ask, why have we gone to such 
trouble to try to avoid this.  We examine two traditional atomicity 
techniques here. 
 
1. Shadows:  Shadows (used by System R [3]) separate flushing 

into (i) writing object values to the disk and (ii) including 
these values in the “official” stable system state (called 
“propagation” in [5]).  When all values are written, one 
atomically installs them by “swinging” a pointer with a 
single atomic disk write.  With shadows, the entire stable 

state needs to be shadowed since any part of it might need to 
be atomically flushed.  Shadows relocate objects every time 
they are written, destroying access sequentiality.  Database 
systems almost universally use logging with update in place, 
necessitating a different approach to atomic flushing.   

2. Flush “transactions”: Database systems achieve atomicity for 
a set of activities by wrapping them in a transaction.   A 
failure before commit means that none of the activities have 
“happened”.  After commit, all of the activities are 
guaranteed to have happened.  So we can achieve flush 
atomicity by writing the values of the objects to be flushed 
all to the log as part of a flush transaction, then writing a 
commit record for this transaction.  Once committed, we can 
then overwrite the states of the flushed objects in the stable 
database with the logged values.  

 
To realize a flush transaction, it is important that the states of the 
objects involved in the transaction be “frozen” in a “flush 
transaction” consistent state.  Hence, we need to protect them 
from change during the execution of the flush, which includes 
both logging and subsequently flushing the objects.  This kind of 
consideration is why System R [3] quiesced the system, i.e. 
paused execution by refusing new actions and completing existing 
actions, until an action consistent checkpoint was completed.  

In terms of I/O costs, each object in the atomic flush set needs 
to be written twice.  The first time, it is written to the log.  The 
log is forced to commit the flush transaction.  Then the objects 
must be updated in place by overwriting them with the values 
just logged.  

Comparing Costs 
 
CM initiated identity writes improve upon flush transactions in 
two ways.   
1. System interruption is avoided.  There is no requirement to 

quiesce the system to ensure that “flush transaction” 
consistent values are written to the stable system state.  
Rather, we can write values one at a time.  Even a 
subsequent update of an object that is the subject of the CM 
initiated write can be handled as a normal part of CM 
operation.  So values need be “frozen” only during the time 
they are actually being written, the same requirement that 
database systems normally have when managing the cache.   

2. I/O cost is less.  Using CM identity, one object need not be 
logged prior to being flushed, since single object flushing 
doesn’t need extra logging.  We expect that most multi-
object atomic flush sets will be small, mostly of size two, 
where saving one I/O is important.   In this case, we write 
log two object values when flushing atomically, but only one 
object value when using CM initiated writes.   Further, the 
normal system operations might remove objects from 
vars(n), avoiding even more I/O’s.    Hot objects will need to 
be retained in the cache in any event.   Hence, we can decide 
to merely install operations on them via logging, without 
flushing them immediately, further reducing I/O cost. 

 
An additional benefit to cache manager initiated writes is that we 
can treat these operations in the same way that we treat regular 
operations, not as a special mechanism.     



 

5 Recovery REDO Tests 

 
To recover the stable database after a crash, the recovery process 
scans the log sequentially from the redo scan start point (log start 
in [8]) to the end of log.  It must determine which operations to 
replay via the REDO test of section 2.  REDO tests each operation 
when scanned.  If REDO returns true, the operation is re-executed 
using the state S formed from the pre-crash stable state as updated 
by prior redo recovery.  We face three related difficulties in to 
construct an effective REDO test for logical log operations.   
1. Determining whether an operation is installable when write-

write edges between log operations can exist.  
2. Avoiding redo of operations in the installed set I, especially 

when re-execution is costly.   
3. Determining if an operation is in I when it may be installed 

without flushing its entire writeset, as permitted by rW.  
We want to exploit the explanation of the after-crash state that has 
the largest set L of installed operations, and only redo operations 
in H – L.  While determining L is not always feasible, we desire 
to use as large an installed set as possible to explain the stable 
state.  Hence, if we can determine that an operation is in L, we 
want REDO to return false and the operation to be bypassed. 

SI-based REDO Tests 

 
We focus on REDO tests based on state identifiers (SI’s).   
(Frequently log sequence numbers (LSNs) are used as SI’s.)  One 
SI, denoted the vSI, is stored with each object, and another, the 
lSI, with each log record.  For physiological operations, an update 
of X by an operation with a log record whose lSI is k sets X’s vSI 
to k. SI’s increase monotonically.  If X’s vSI ≥ lSI, the operation 
with lSI = k is in L and we bypass it.  Otherwise, we redo it.  This 
is an effective REDO test. 
 
The SI based scheme can easily be extended to handle logical log 
operations when using write graph W.  We test SI’s to determine 
whether an Op is installed, not for applicability.  We write vSI’s 
for each object in writeset(Op) and test objects in writeset(Op) to 
determine whether they contain Op’s results.  For W, the SI test 
returns the same result for all objects in writeset(Op) because we 
atomically install writeset(Op).   If vSI ≥ lSI for any object in 
writeset(Op), REDO returns false, the operation is in L and we 
bypass it.  If vSI < lSI, Op is uninstalled (i.e., it is in H - I) and is 
re-executed, with objects in writeset(Op) set to their Op results.  
 
Correct redo recovery requires only that exposed objects have 
appropriate values.  A REDO test can return false, meaning redo is 
unnecessary for operations whose writeset’s are entirely 
unexposed.  Consider a system that only logs physical writes 
WP(X,logged(v)) where X is updated from the logged value v.  We 
could safely redo all such operations on the log, as they are 
always applicable and installable.  Better would be a REDO ``is-
installed" test to redo only operations that pass our SI test.  Even 
better is to bypass operations on objects until their results are 
exposed.  When all logged operations are blind writes, this means 
doing nothing until we find the last write for each object.  Indeed, 
media recovery is sometimes performed using a log in which all 
earlier operations have been deleted [4].  This treats all operations 
that write to unexposed objects as already installed, regardless of 
the SI test result. 
 

In rW, not all of writeset(Op) need actually be flushed to install 
Op.  So the SI test might not return the same result for all objects 
in writeset(Op).  However, because we guarantee atomic 
installation (not atomic flush), if vSI ≥ lSI for any object in 
writeset(Op), then the operation is manifestly installed.  Hence, 
other objects in writeset(Op) with vSI < lSI  are established as not 
exposed.   
 
The traditional SI REDO test treats all objects with vSI < lSI as if 
they were exposed.  To cope with log operations whose writeset’s 
may be unexposed and to exploit the potential substantial gain by 
treating these operations as installed, we need a REDO test for 
operation Op of the following form: 
• if  an object in writeset(Op) has vSI < lSI  and is exposed, 

return true, i.e., redo Op; 
• otherwise, return false. 
Determining whether an object is exposed requires testing more 
than just its vSI, however.   

Generalized Recovery SI’s 
 
All of writeset(Op) may be unexposed.  When this occurs, it is 
possible that vSI < lSI for all variables in writeset(Op) but for Op 
to nonetheless be in L.  This is the case trivially in our physical 
write example above.  We want REDO to return false in this case.  
While unexposed variables can be set to arbitrary values, and 
redoing Op may not compromise recoverability, we want to avoid 
the cost of re-execution.  This is particularly important for 
expensive operations like application execution or file writes. 
 
Hence, we introduce the recovery SI (rSI) for an object (in 
ARIES, called a recovery LSN  or rLSN).  An rLSN for a page 
“indicates from what point in the log there may be updates which 
are, possibly, not yet in the nonvolatile storage version of the 
page" [11].  There is an rSI for each recoverable object.  With 
physiological operations, which do not have inter-object flush 
dependencies, the vSI of the value of an object that is stored in the 
stable state indicates the last operation installed for the object.  
After a cached object is flushed, its rSI is reset to the SI of the 
first update after the flush. 
 
LSN’s across all objects increase monotonically with each update, 
not just on a per object basis.  ARIES keeps an rLSN’s for each 
dirty object in the CM’s dirty pages (dirty objects) table.  The 
minimum rLSN identifies the redo scan start point.  All operations 
preceding this minimum rLSN are installed.  All uninstalled 
operations are in the tail of the log following this point.  This 
integrates well when LSN's are used because an LSN identifies a 
location in the log.  Our REDO test can use LSN’s as SI’s, but 
requires only that an object’s SI’s increase monotonically.    
 
ARIES writes to the log the identities of dirty pages and their 
rSI’s in its checkpoint record.  Before redo recovery, the latest 
checkpoint record is retrieved.   Its dirty pages are the only pages 
with uninstalled updates at the time of the checkpoint.  Log 
operations that precede the checkpoint and that involve pages not 
in the checkpoint record are all installed and hence can be 
bypassed.  This more sophisticated REDO test uses the 
checkpoint rSI’s as an adjunct to the SI test.  However, it only 
optimizes the SI test whose result could always be used, though at 



 

the additional cost of reading a page.   It does not test if an object 
is exposed.    
 
We use an rSI as part of a REDO test that combines an ‘‘is 
exposed" test with an ‘‘is installed" test.  (Operations with 
unexposed results are “installed”.)  An object's rSI is the lSI of its 
earliest uninstalled operation (whose results are exposed).  The 
REDO test becomes 
• if Op’s lSI ≥  max(rSI,vSI+1) for objects in writeset(Op), Op 

is uninstalled and some result value  is exposed.  Return true;  
• otherwise, return false. 
Below we discuss how to maintain rSI’s during normal execution.   
 
We generalized the rSI definition to exploit the fact that all 
operations in ops(n) are installed when vars(n) are flushed.  And 
this is so even when there are objects in Notx(n) that are not 
flushed.  Objects in Notx(n) are unexposed because all operations 
that might have read their values must be installed because of 
inverse write-read edges.  The rule then is that we advance the rSI 
of an object exactly when we install operations that write it, 
whether or not the object is flushed during installation. Thus, we  
advance the rSI’s of all objects in Writes(n) = vars(n) 8 Notx(n) 
when vars(n) is flushed.  An object X’s rSI is set to the lSI of the 
first uninstalled operation to update X.  This is usually the lSI of 
the first operation with an update that follows the last update of an 
object in Notx(n), as it is typically the subsequent operation’s 
writing to X that make it unexposed.  When X’s lifetime is 
terminated, as in a delete, rSI becomes the lSI of the delete and 
the object can be removed from the object table.  Hence, for a 
dirty object,  rSI ��lSI of the first uninstalled operation to write X, 
as required in the REDO test. 

Consider again the example in Figure 7.  If node (1) is installed 
via the flushing of Y, X is also installed and given an updated rSI 
derived from it’s being written by operation A, although X was 
not itself flushed.  A couple of points are worth making:  

• The rSI for X is not advanced when operation C is 
encountered and logged, although prior values of X are no 
longer needed to recover the latest value for X.   Prior values 
of X may still be needed because other operations read them.  
In  Figure 7, such a value of X has been read by operation B.  

• The rSI for X is advanced when node (1) is installed because 
objects in Notx(1) are now guaranteed to be not exposed.  
Hence, their values are not needed by any other operation.   
X’s rSI is then set to the lSI for operation C. 

Logging and Recovery using rSI’s 
 
We want to perform our REDO test on the log records 
encountered during the redo recovery scan and only replay 
operations uninstalled in I, our explaining installed set, i.e. with 
lSI ≥ max( rSI,vSI+1). To use rSI’s during recovery requires some 
action preliminary to performing a redo recovery pass.  At a 
minimum, we retrieve a version of the object table (a dirty object 
table) that could, as described in ARIES, form a part of our 
recovery log checkpoint record.  Further, a recovery analysis pass 
preceding the redo pass permits us to exploit the logging of 
operation installation to generate a dirty object table that reflects 
the state of dirty objects as of a time close to the crash. 
Importantly,  it lets us remove clean objects from the dirty object 
table, and to advance rSI’s of dirty objects.   

The situation is particularly simple for physiological operations.  
By logging the flush of an object at the point when we know the 
flush has successfully completed, we are recording not only that 
the object is now clean but also that prior operations updating the 
object are installed.  During the analysis pass of recovery, when 
we encounter a “flush” log record, we remove the object from the 
dirty objects table.   If another operation that writes the object is 
encountered, we return the object to the dirty objects table and set 
the rSI of the object to the lSI for this operation.   Thus, the rSI 
remains equal to the lSI of the first uninstalled operation.  This 
new rSI helps during redo recovery with our REDO test.  Logging 
object flushes has its origin in recovery lore.  Flushes can be 
lazily logged after the flush as the vSI of the object is checked by 
REDO should an update for the object with an lSI greater than the 
rSI be present on the log. 
 
In rW, flushing objects in vars(n), installs operations in ops(n).  
Flushing is not needed for the unexposed objects of Notx(n).  We 
capture these opportunities to advance object rSI’s by logging the 
installation of each node n of rW.   In that log record, in addition 
to identifying the objects of vars(n) and their rSI’s,  we identify 
objects in Notx(n) and their rSI’s.  Recall that the rSI for an 
unexposed object is the lSI for the "blind" write (or delete) that 
follows it.   This does for unexposed and exposed objects updated 
by logical operations what logging of flushes does for 
physiological operations.  
 
It is possible that ops(n) has been installed but the log record 
describing the installation did not reach the stable log before the 
system crashed. Thus, we only have approximate information 
about rSI’s during recovery.  Sometimes checking vSI’s of objects 
in writeset(Op), as with physiological operations, will prevent a 
needless redo of Op.  We check the vSI’s to ensure that we do not 
reset objects that are exposed.  Operations prevented from being 
re-executed in this way are manifestly installed.  But, all results of 
Op can be unexposed but Op can be in L (the largest set of 
installed operations explaining state S). Unfortunately, REDO will 
indicate that Op is uninstalled.  Hence, when REDO returns true, 
the operation involved may be: 
1) in H - I for an I that explains S.  The operation is then 

applicable and installable.  Re-execution will increase 
recovery time, but it will not lead to a recovery failure.  

2) installed in all I that explain S.  The operation may not be 
applicable as only a minimum uninstalled operation is 
guaranteed to be applicable.  This re-execution may produce 
erroneous results.  If an operation re-execution   
a) only updates the original writeset we do not discover a 

problem, but no subsequent redo is affected as all 
objects in writeset(Op) are unexposed.   

b) attempts to update more than the original writeset, we 
can detect this and terminate the redo.  

c) raises an exception when executing against inapplicable 
state, execution is terminated.   

 
We “expand” REDO to include a trial execution of the operation, 
where if the execution produces errors b) and c), it is "voided".  In 
no case are changes made to exposed objects.  Hence, we redo all 
operations where the SI REDO test returns true.  We can and do 
re-execute unneeded operations during recovery.   Because only 
the installation(s) just before a crash may be missed, the unneeded 
extra work will usually be modest.  
 



 

Recovery optimization using rSI’s and logging installations is 
extremely important when we extend recovery to non-traditional 
objects such as application state and files.  It should usually be 
possible to avoid both application re-execution and the writing of 
large files given that both frequently have relatively short 
lifetimes.   Many objects named in log records will, in fact, be 
terminated or deleted, and so will not be exposed.  Hence, one can 
treat all their operations as installed (i.e. the REDO test returns 
false) even when they have not been flushed recently, or ever.   
 
During recovery, the same conditions on cache flushing apply as 
during normal operation.  Hence, it is necessary to redo 
operations and cache their results.  Only when the re-constructed 
write graph permits their flushing can operation results be 
installed.  It is possible to avoid reconstructing the write graph by 
flushing operations as they are completed, exactly as is the case 
during normal execution.  However, it is usually preferable to 
avoid the frequent I/O and rely on the write graph to guide a more 
efficient flushing regime. 

6 Summary 
Our goal has been to promote recovery technology using more 
general log operations than the now state-of-the-art physiological 
operations of [4,11].  Logical logging can reduce dramatically the 
logging required for recovery by using the stable state as a source 
for values to be exploited during recovery.  Physiological logging 
uses only prior values of the object written by an operation.   
Logical logging permits many values from the stable state to be 
used in updating several values per logical operation. 

With logical operations, new uses of recovery are possible at 
reasonable normal execution cost.  Our previous paper [7] showed 
how to provide application recovery when application read 
operations were handled as logical operations, greatly reducing 
the cost of logging reads.  However, logical operations can result 
in cyclic flush dependencies, requiring the atomic flushing of 
multiple objects, a major complication. Write graph W is 
inadequate to avoid this, as once objects need to be flushed 
together atomically, there is no way to flush them separately.   

In [7], we avoided cyclic flush dependencies by restricting 
ourselves solely to logical reads, logging writes as physical 
operations, WP(X,v).  This is expensive as the value v that updates 
X needs to be logged.  The technology introduced in this paper 
deals with logical operations in general. Hence, it can be used to 
reduce the cost of handling application write operations by 
permitting logical write operations WL(A,X)  where the source for 
X’s value is the output buffer of the recovered state A.  Logging 
WL(A,X) does not require writing X’s new value to the log.  This 
dramatically reduces the normal execution cost of logging 
application writes. 

Because of the subtleties of recovery, we have ranged over a 
number of subjects.   
 
The installation graph imposes an operation installation order.  
From it, we derive a write graph that the CM uses to order 
flushing to keep the system state recoverable.  However, the write 
graph W of [8] did not capture the flush requirements with 
sufficient precision for effective cache management.   Therefore, 
in section 3, we introduced a refined write graph rW.  rW does not 
require that unexposed objects be flushed in order to install earlier 

operations that wrote them.   Further, the CM, via generation of 
identity write operations WIP(X,val(X)), can separate objects into 
distinct rW nodes, enabling them to be flushed one at a time.   As 
described in section 4, each identity write permits us to remove its 
updated object from a node’s atomic flush set.  The identity write 
puts the object into a node where it could be flushed by itself.  
Repeating such writes reduces the number of objects in an atomic 
flush set to only one that can then be flushed.  A bonus is that this 
enables operations to be installed in the stable database without 
actually flushing some of their updated objects.   
 
Recovery requires a REDO test to determine when an operation 
needs to be re-executed.  Traditional LSN-based tests require that 
an operation write a single object and operation installation 
required flushing the object.  We generalized this in section 5 to 
state identifier (SI) based tests that work for arbitrary operations.  
A new REDO test exploited write graph rW, where an operation 
can be installed even when (part of) its writeset is not flushed.  
This required that we use a form of recovery LSN called an rSI as 
part of the test.    
 
Recovery for applications or files can be expensive.  Since 
applications and files are frequently only transient objects, 
executing and disappearing, not recovering them when they are 
already deleted or not exposed is a significant recovery 
optimization.  Our new REDO test, based on rW and generalized 
rSI’s, accomplishes that.    Using a separate analysis pass, it 
permits us to identify and redo only operations with exposed 
updates.   
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