

Logical Logging to Extend Recovery to New Domains

 David Lomet Mark Tuttle
 Microsoft Research Compaq Cambridge Research Lab

 Redmond, WA 98052 Cambridge, MA 02139
 lomet@microsoft.com tuttle@crl.dec.com

Abstract
Recovery can be extended to new domains at reduced logging
cost by exploiting "logical" log operations. During recovery, a
logical log operation may read data values from any recoverable
object, not solely from values on the log or from the updated
object. Hence, we needn’t log these values, a substantial saving.
In [8], we developed a redo recovery theory that deals with
general log operations and proved that the stable database remains
recoverable when it is explained in terms of an installation graph.
This graph was used to derive a write graph that determines a
flush order for cached objects that ensures that the database
remains recoverable. In this paper, we introduce a refined write
graph that permits more flexible cache management that flushes
smaller sets of objects. Using this write graph, we show how: (i)
the cache manager can inject its own operations to break up
atomic flush sets; and (ii) the recovery process can avoid redoing
operations whose effects aren’t needed by exploiting generalized
recovery LSNs. These advances permit more cost-effective
recovery for, e.g., files and applications.

1 Introduction

Overview

There is a substantial literature of recovery algorithms, and a short
literature on explaining recovery. A recent book [6] captures
much of this. Recovery algorithms encompass logging, cache
management, and recovery itself. Clever algorithms tailored for
particular system have been invented, e.g. [2,3], evolving to
"physiological" techniques [4] such as ARIES [11]. Much of this
has been an attempt to balance the choice of log operation (and
hence the logging cost) against the complexity of the cache
management needed to keep the database recoverable.

Two papers that described the recovery problem in some
generality and characterized recovery methods are [5,1]. In [1],
the recovery schemes were classified by the interplay of redo and
undo recovery. Closer to our discussion here, [5] classifies
recovery algorithms, in part, by their impact on cache
management. Two characteristics were whether

1. the entire cache needed to be flushed atomically (ATOMIC
vs. ~ATOMIC) to the stable state and

2. a cached object could be removed from the cache at any time
to permit its portion of the cache to be reused by another
object (STEAL vs. ~STEAL).

The physiological recovery methods [4,11] have become the
methods of choice in part because they are (~ATOMIC, STEAL),
hence maximizing cache management flexibility, while also
providing high concurrency. Physiological operations are of the
form X � I�;�, i.e. they transform a single recoverable object.
For example, inserting a new record on a page, where only the
new record need be logged, transforms the page from a state
without the record to one with the record.

In [8], we introduced a general framework for understanding redo
recovery. Two factors motivated us. First, we wanted to explain
existing recovery technology. Second, we wanted to generalize
recovery technology to enable its exploitation in domains other
than database recovery. We showed how to exploit more
powerful log operations in [7] to reduce recovery cost for
applications. Our focus here is on redo recovery using logical
operations that permit cost-effective recovery for new areas like
applications and file systems. For this, we need to understand
how the choice of log operations impacts logging cost, cache
management, and recovery itself.

Recovery Opportunities and Problems

It is usually desirable to choose log operations that minimize
logging overhead during normal operation. Figure 1 illustrates
how, by logging "logical" operations, to avoid writing large data
values to the log and contrasts this with the logging cost of
"physiological" log operations. In Figure 1(a), logical operation
A (Y ← f(X,Y)) reads objects X and Y and writes object Y. Then
operation B (X ← g(Y)) reads Y and writes X. These "logical"
operations can be very efficiently logged. The log record for A
(shown next to LOG:) indicates that X and Y have been read by
making them arguments to f. Further, Y has been written (it
precedes the colon, and operation A (i.e. function f) did the
transformation. In Figure 1(b), we describe the changes to X and
Y with "physiological" operations. These operations must involve
only a single object. Thus, when we now log the write of Y
during operation A, this requires that we write either the value of
X or the result of f(X,Y) in the log record for operation A. In the
former case, our log record for A still indicates that Y has been
read and written, and that f was the function that did the
transformation. Now, however, we see that the value of X at the
time of the operation has been logged. This is denoted by log(X).
This logged value now becomes input to the logged operation A
on the LOG in Figure 1(b). Similar considerations apply to
operation B.

In database systems, updates are typically to records on a page, so
it is convenient to formulate updates as physiological operations
updating pages. Databases latch small objects like pages in order
to facilitate concurrency. In other domains such as application
recovery, however, concurrency is often less of an issue.
Application designers may program in terms of updates to much
larger objects. Here, logging logical operations on large objects
to avoid logging the objects themselves can result in enormous
savings. Logging logical operations, however, can have a
profound impact on cache management and recovery. The goal of
this paper is to reduce this impact.

We give some examples of how logical logging can substantially
reduce the logging required during normal execution.

Application Recovery: In [7], we provided logical operations
for recovering application state. Relating these to operations A
and B of Figure 1, Y plays the role of application state and X the
object that is being read and written

• Application read (R(X,Y)): Application Y reads object X into
its input buffer, transforming the state of Y to a new state Y ′.
This application read operation has the form of operation A.
Using a logical log operation avoids the need to log the value
of X that is read or the value of Y that is written.

• Application write (WL(Y,X)): Application Y writes object X
from its output buffer. This does not change application
state Y. This “logical” application write operation has the
form of operation B. Logical writes were not included in [7]
because of the potential for cyclic flush dependencies.

• Application execution (Ex(Appl)): An application’s
execution between database calls is a physiological operation
Appl = Ex(Appl). The operation begins when control is
returned to Appl, its execution transforms Appl's state to the
new state when Appl next calls the database system.
Parameters for Ex(Appl) are stored in the log record

Physiological operations cannot achieve the log space savings for
application reads and writes, as in both cases, the values read
and/or the values written would need to be logged.

File System Recovery: The forms of logical operation described
in Figure 1 can also provide recovery for a file system. An
operation that copies file X to file Y is in the form of operation B.
This same form describes a sort, where X is the unsorted input
and Y is the sorted output. In neither case do we log the values of
input or output files. Only the transformations are logged and the
source and target files id’s. Were physiological operations used,
we would need to log file Y (or file X) in its entirety.

Database Recovery: Logical logging is also useful in database
recovery. Operations of the form of operation B of Figure 1(a)
can be used in B-tree splits, i.e., to copy half the contents of a full
B-tree page to a new page. X denotes the old page and Y the new
page. The split operation moves keys greater than the split key to
the new page. A logical split operation avoids the need to log the
contents of the new B-tree node, which is required when using the
simpler physiological operation for B of Figure 1(b).

The key to logging economy from using logical operations in new
recovery domains is logging the identifiers of the sources of data
values instead of the values. Since many operations have large
operands, page size or larger, logging a source identifier that is

Figure 1: Logical (a) and physiological (b) operations needed
to accomplish the same result for operations A and B.

unlikely to be larger than 16 bytes is a great saving. Both
application state and files may be many pages in size.

Our obligation when taking advantage of the logging economy of
logical log operations is to ensure that the values of the data
sources needed during recovery are the same as were present
during the original execution. This complicates cache
management and is the price we pay for logging efficiency. Thus,
in our example of Figure 1(a), once A is executed, a flush order
dependency exists to ensure that A's result Y is flushed prior to
any subsequent change to X being flushed. If an updated X were
flushed first, we could not replay A to regenerate the correct value
for Y were the system to crash and require recovery.

Flush order dependencies can require the atomic flush of multiple
objects. For example, atomic flushing (propagating) was a
requirement of IBM’s System R [3]. While we might restrict
operations to write only one object (but allow reading other
objects), this does not avoid the problem. In Figure 1(a), once B
is executed, and before its output X is flushed, we must prevent
any modification to B's input Y in order for B to be replayable.
However, operation A requires that Y be flushed before X. Only
flushing X and Y together atomically satisfies both dependencies,
because then there is no need to replay one operation after the
other 's updates have been flushed.

Media recovery using database backups is a further complication.
A backup needs to be recoverable just as the stable database is in
order for media recovery to succeed. However, backups are
usually asynchronous with normal execution (a fuzzy backup).
Copying the database to the backup can introduce flush order
violations for the backup even when cache management honors
flush order for the stable database. We describe how such
backups can be kept recoverable in [10].

Paper’s Contribution

Our goal is to show that recovery based on log operations like
those in Figure 1(a) is very advantageous. The recovery system
can choose from a wider class of operations, logical operations as
well as physiological. It can decide whether the cost of writing
large objects to the log should be the principal concern, hence
justifying logical operations despite more difficult cache

Op B
X ←g(Y)

LOG: X←
g(log(Y))

(b)

Op B
X ← g(Y)

LOG: X ←
g(Y)

Time

Op A
Y ←f(X,Y)
LOG: Y ←

f(X,Y)

(a)

Op A
Y ←f(X,Y)
LOG: Y ←
f(log(X),Y)

management. It might also decide that the objects involved are
not so large as to justify more complex cache management, and
hence choose physiological operations. The wider choice of
forms of log operations permits cost effective recovery for new
domains, where recoverable objects can be much larger than is
usually the case for database systems.

Our focus is on the cache management and recovery costs and
complications resulting from logical log operations. The paper
introduces a fundamental new insight in how to install operations
that permits more flexible cache management. It then introduces
two additional innovations exploiting this so that (i) the cache
manager can cope with logical operations, and (ii) recovery
processing can be optimized.

New Write Graph

Flush dependencies are captured in a write graph [8], defined in
Section 3. Objects associated with a write graph node must be
flushed atomically. A well formed write graph is acyclic to
impose a flush order on cached objects. When a cycle arises, we
“collapse” the nodes involved into a single node which will have
multiple objects associated with it. The I/O overhead and system
interruption of multi-object atomic flushing makes this costly.

Restricting logged operations can ensure that it is unnecessary to
flush more than one object at a time. Physiological operations
avoid all flush dependencies. In [7], application operations update
only one object and logical log operations only describe
application reads. This prevents write graph cycles, but require
application write operations be logged as physical operations. So
logging cost is low for application reads, but an application write
log record includes the data value to be written. This is costly
when objects are large, e.g. files.

With the write graph of [8], if the cache manager ever determines
that two objects x and y are associated with one write graph node,
then they must be flushed atomically when they are next written
to disk. In this paper, we show how subsequent updates make it
possible to relax this atomicity and flush them separately if they
are flushed in the right order. We capture this relaxation in terms
of a new refined write graph rW. The fundamental insight is that
subsequent updates can cause the value of x to become unexposed
(i.e., subsequent updates do not need to read x to compute its next
value) and not have to be flushed

 Innovations

Cache Manager Initiated Writes

The cache manager (CM) can introduce operations that break up
atomic flush sets by making object values unexposed, so that they
do not need to be flushed to install earlier operations. These
"identity" operations do not change the objects involved but result
in logging activity that makes separate flushing possible. Each
operation is a physical write that saves the value (state) of an
object in a log record. This has a lower cost and less impact on
system operation than atomic flushing. The result is that the
recovery system can permit logical operations that are flexible

and efficient without fear that the overhead of atomic flushing
will undermine system performance or concurrency.

Generalized Recovery LSNs

With rW, it is sometimes possible to reduce the number of
operations that require redo recovery without flushing all their
updated objects to the stable database during normal execution.
This can be exploited to optimize recovery, which is especially
important when the logged operations are expensive to re-execute,
e.g., applications [7]. This is accomplished by using recovery
LSNs (rLSNs) [11] in our more general setting with logical
operations, and based on how we install their effects. An object's
rLSN identifies the earliest log record needed for its recovery.
Logical operations can make determining the rLSN rather subtle.

Paper Organization

In the next section, we present a simplified version of the
recovery framework of [8] to reduce the framework description to
manageable size. We define installation graph, exposed objects,
explainable database state, and recoverable database. We show
how log-based recovery systems can be understood in terms of
these notions. The definitions and theorems have been extended
from what was in [8] to clarify the definition of exposed objects,
which we exploit in the current paper.

Section 3 discusses how to translate from the installation graph
ordering operations to a write graph ordering object flushes. We
then introduce our new write graph rW that improves on the write
graph W of [8] by exploiting the fact that unexposed objects need
not be in an understandable state for recovery to succeed. This
lets us remove objects from atomic flush sets, and ultimately to
flush objects one at a time.

We discuss how the CM can exploit rW to break up atomic flush
sets in section 4. It does this by introducing operations of its own
(identity writes) and interjecting them into the stream of
operations that are recoverable. We compare this to the logging
cost and concurrency difficulties of a multi-object atomic flush.

A side effect of the refined write graph is that we can sometimes
"install" operations without flushing their results to the stable
database. We can exploit this to optimize recovery processing,
shortening the recovery log scanned and reducing the number of
operations that need to be redone. We describe this in section 5.

Finally, we summarize the results of our efforts in section 6.

2 Recovery Framework

Installation is the fundamental recovery concept. Pragmatically,
an installed operation is one that no longer needs to be re-
executed in order to recover the stable database state. An
operation is usually installed by writing to the stable state (disk)
the objects it changes to include the operation’s effects in the
stable state. We call the writing of changed objects to stable state
flushing.

We simplify the recovery framework of [8] by collapsing the
notions of update, redo, and operation into the single notion of
operation. The original framework permitted an operation to
consist of several updates, each atomically installed. Here, we
restrict operations to a single update. Note, however, that while
we simplify the description, the techniques should nonetheless be
applicable in the fully general setting.

We make common assumptions about the recovery system. The
write-ahead log (WAL) protocol is followed in which all changes
in stable system state must be described by operations on the
stable log before the changes caused by the operation are
"installed". Further, we assume that the redo recovery process is
ARIES-like in that we “repeat history”. Operations on the log are
assumed to be in conflict order. Note that we do not require that
operations on the log be totally ordered, as conflict order is not a
total order.

Installation Graph

The basis for the recovery framework is an installation graph. It
constrains the order in which changes made by operations can be
made part of the stable database state, and provides a way of
explaining what operations can be considered installed. This
graph uses edges to order operations, like the conflict graph, but
installation ordering is much weaker. If, after crash, the state can
be explained in terms of this graph, then we can recover by
selectively "replaying" logged operations. The installation graph
restricts when objects can be flushed. It lets us construct a cache
management algorithm that guarantees that the stable state
remains explainable, and a recovery algorithm that recovers any
explainable state. Thus, it captures the impact of the choice of
logged operations on the recovery process.

Our installation graph is a graph whose nodes are operations and
whose edges constrain the order in which the operations are
installed. It is obtained from the conflict graph by keeping all
read-write edges, throwing away all write-read edges, and
keeping only some write-write edges. We thus define the
installation graph for a history H (or conflict graph) with
operations H as a directed graph where each node is labeled with
an operation O. An operation O is characterized by the objects it
reads (readset(O)) and the objects it writes (writeset(O)). For
distinct operations O and P, there is an edge from O to P if O < P
in H and either
1. read-write edges: readset(O) �writeset(P) �� .

Here, a later operation updates an object read by an earlier
operation. If P’s updates are posted to the stable database,
but a crash prevents O’s from being posted, then O must be
replayed to produce the missing effects, but cannot because
readset(O) has changed. Hence, the database will not be
recoverable.

2. write-write edges: P is in must(O) but not in can(O). The
operations of must(O) must be recovered by re-execution
should writeset(O) be reset by redoing O, because some of
their updates will be reset. The operations of can(O) are
those that can be recovered as a result of recovering only
operations in must(O). See [8] for precise definitions.
Write-write order is usually not violated during normal
execution as we only write the latest state, but it can pose
difficulties during recovery. Recovery deals with incomplete

information. Whether a reset violates write-write order may
be unknown. One strategy is to log only operations for
which write-write edges do not arise. A second strategy,
which we pursue here, never resets state during recovery,
and hence write-write order will not be violated.

Explainable States

For recovery to be feasible, we must understand the stable system
state after a crash in terms of what operations have their effects
already present (installed) in the stable system state and what
operations do not (uninstalled). During recovery, certain
important objects must contain correct values. We define a set I
to be a prefix set if for every operation O in Ι, I contains every P
< O (in installation order) of H. An object x to be exposed by a
prefix set Ι iff one of the following conditions is true:
1. no operation in H - I reads or writes x, or
2. some operation in H - I reads or writes x, and the minimal

operation (earliest in conflict order) reads x.

A prefix set I of operations in H explains state S if for every
object x exposed by Ι, the value of x in S is the value of x after the
last operation (in conflict order) of Ι. We call the operations in I
installed operations, while the operations in H - I are uninstalled
operations (for this explanation). Thus, if S is the state of the
stable database at the start of recovery, then the sequence of
operations that created S is unimportant. Only the set of
operations considered installed in S is important. This is crucial,
as it is impossible in general to determine the exact installation
sequence that leads to a database state. Indeed, it may be
possible to explain S with several different sets of installed
operations.

Minimal Uninstalled Operations

An operation O is applicable to a state S at recovery time if for
every object x in readset(O), the value of x in S is given by O's
before image. This means that O reads the same values during
recovery as it did during normal operation, so it will write the
same values as well. We can install O by setting every object x in
writeset(O) to its after image produced by O. An operation O is
installable in a state S if the database state S’ = SO obtained by
installing O in S is explainable by a prefix of the installation
graph. We can extend these definitions to sequences of
operations in the obvious way. A prefix set I can be extended by
an operation O if there is no write-write edge from O to any
operation in Ι and I contains all P < O. We define extend(Ι,O) as
deleting every operation in must(O) from Ι, and then including O.
This is the result of removing all operations that O de-installs, and
then making sure that O's effects are present.

An explainable state can be recovered by installing uninstalled
operations in installation order, starting from a minimal
uninstalled operation, i.e., one with no uninstalled installation
predecessors. Thus, we have:

Theorem 1: Let S be a state explainable by a prefix set I. If O
is a minimal uninstalled operation of H - I, then O is
applicable to S and extend(Ι ,O) explains SO, so O is installable
in S.

System Recovery

Theorem 1 suggests how to recover an explainable state: choose a
minimal uninstalled operation O, install it, and repeat. Of course,
O must be on the log. Informally, a stable state is recoverable if it
is explainable and the log contains the uninstalled operations. A
database D consists of stable state S, a log L, and a history H. It
is explainable if there is a prefix set I of the history H such that I
explains S and operations in H - I are on the log L.

Procedure Recover(D,Ι) in Figure 2 recovers a database D
explained by a Ι. The algorithm considers all operations O in log
order, and then invokes a test REDO(D,Ι,O) to determine whether
O should be installed into the state S of database D. The
recovery task of the CM is to guarantee that there is always at
least one I that explains S. The task of Recover(D,Ι) is to ensure
that operations replayed during recovery preserve at least one I
that explains the recovering state S.

RREEDDOO(D,Ι,O) must return true if O is a minimal uninstalled
operation of I. In this case, Theorem 1 guarantees that O is
applicable and installable. It can be hard to tell that an operation
is uninstalled in I, so a recovery method may end up redoing
operations already installed in I. In fact, whenever O is
applicable and installable, it is okay for the test to return true.
Hence, RREEDDOO(D,Ι,O) satisfies:
• Safety: If it returns true, then

• O is applicable to S, and
• there are no write-write edges from O to operations in I

• Liveness: It returns true if O is a minimal uninstalled
operation of Ι

No recovery algorithm actually maintains Ι. However, Ι is only
used when evaluating RREEDDOO(D,Ι,O). Cache management will
guarantee that there is at least one explaining Ι at the time of a
crash. We need to design a satisfactory REDO. We can then
prove that the invariant "D is explained by Ι " holds after each
step of Recover(D,Ι), and conclude that an explainable database is
recoverable. Of course, designing an effective REDO test and
proving that the test satisfies the preceding requirements based on
the explanations that it identifies is non-trivial.

Theorem 2: If database D is explained by I, then Recover(D,Ι)
is an idempotent recovery process that recovers D.

procedure Recover(D,Ι)

while the log L is not empty do
choose a minimal operation O in the log L
if REDO(D,Ι, O) then

execute (redo) O
flush writeset(O) to S,
replace Ι with extend(Ι,O)
delete O from the log L
end then

end do
end proc

Figure 2: Recovering a database D explained by prefix sets of
installed operations contained in ΣΙ .

So the recovery task is clear. We need a CM that guarantees there
is an I that explains the stable state S. And we need a recovery
process that can correctly identify an I that explains S so that as
the log is scanned, the REDO test causes the execution of the
appropriate operations. Section 3 addresses cache management,
section 4 the REDO test.

3 Write Graphs

Background
A cache manager divides volatile state into a ‘‘dirty’’ part and a
‘‘clean’’ part (not discussed here). An object enters the dirty
volatile state when an operation updates it, can be the subject of
multiple updates while there, and leaves the dirty volatile state
upon being flushed to the stable database. Traditionally, a
database CM recovers database pages and tracks cached pages in
a page table. We abstract that to an object table as we apply
recovery to more than just pages. Objects of the dirty volatile
state are written to the stable database for two reasons. First, the
volatile state can be (nearly) full, requiring that objects currently
present be removed to make room for new objects. Second, it may
be desired to shorten recovery by checkpointing, i.e. truncating
the stable log. Only installed operations can be removed from the
log, so it may be necessary to install some operations before log
truncation. Systematic installation permits a prefix of the log to
be truncated while preserving stable system state recoverability,
which requires that the log contain all operations that are
uninstalled in some explanation of the stable state.

The duty of the CM is to ensure that there is always at least one I
that explains the database D. Thus, during normal operation, the
CM can focus on the I that is the "leading edge" set of installed
operations, and ensure that this set will always explain D. (The
situation is more complicated during recovery.)

The CM’s central problem is that installation graph nodes are
operations but the CM writes objects. The CM must write objects
so that operation atomicity and installation order are honored. It
computes a write graph for this purpose. Each write graph node v
has an associated set ops(v) of uninstalled operations that are
maintained as part of volatile state and a set vars(v) of the objects
(variables) these operations write. There is an edge from v to w in
the write graph if there is an installation edge from any operation
P in ops(v) to any operation Q in ops(w).

The operations of ops(v) are installed by flushing the last values
written to the objects of vars(v) and vars(v) is written atomically
in order to guarantee operation atomicity and installation order
within v. The vars(v) sets must be flushed in write graph order to
guarantee installation order. (Physiological operations result in a
degenerate write graph, each node of which is associated with the
operations that write to a single object, and with no edges
between nodes and hence with no restrictions on flush order.)

The installation graph is the gold standard for explaining and
controlling installation of operations. Write graphs are derived
from the installation graph to expedite cache management. Many
write graphs are possible. For example, a single node write graph
that requires atomically flushing the entire cache is sufficient to

ensure recovery (though it is rarely necessary). It should be clear
that the more “refined” the write graph is (i.e., the more nodes
into which the uninstalled operations can be divided) the more
flexibility the cache manager will have. The write graph W of [8],
which we describe next, is also sufficient and will usually consist
of more than one node. It too, however, is often not necessary.

procedure WriteGraph(In)
 T ← the transitive closure of O ~ P
 iff writeset(O) ∩writeset(P) �� for operations labeling

nodes of In
 V ← collapse In with respect to the equivalence classes of T
 S ← the strongly connected components of V
 W ← collapse V with respect to the equivalence classes of

nodes in S
 return(W) /* collapsing V made W acyclic */
 end proc

Figure 3: Computing the write graph W.

procedure PurgeCache
 compute the write graph W from the operations in the cache
 choose a minimal node v in W
 if operations in ops(v) are not already on the stable log then
 write a conflict graph prefix of operations in the volatile
 log buffer that include ops(v) to the stable log in conflict
 order (WAL protocol) (this adds the operations to the
 stable history)
 delete the conflict graph prefix of operations from the
 volatile log buffer that were written
 end then
 atomically write values of objects in vars(v) to the stable
 state
 remove v from W
 delete objects in vars(v) from the dirty cache
 delete ops(v) from the cache
 return
 end proc

Figure 4. The cache purging algorithm PurgeCache.

W is computed by WriteGraph(In) from the subgraph In of the
installation graph determined by operations in the cache that are
uninstalled in the stable database (operations in H - I for the set I
that explains the stable state). This algorithm uses the idea of
collapsing a graph A with respect to a partition of its nodes.
Each set of the partition represents objects that must be written
atomically. The result is a graph B where each node w
corresponds to a class πw in the partition . An edge exists
between nodes v and w of B if there is an edge between nodes a
and b of A contained respectively in πv and πw. This idea is used
twice in computing the write graph, once to collapse intersecting
updates, and again to make the write graph acyclic. Only acyclic
write graphs specify a feasible flush order. In [7] we showed how
to dynamically compute W for the application operations
described there. Here we describe the computation of a complete
W from the set of uninstalled operations maintained in a cache.

When the CM uses an algorithm equivalent to PurgeCache in
Figure 4 to write to the stable state during normal execution, the

recoverability of the stable database is preserved. To prove this
requires that we show that for stable state S explainable by Ι, that
invariant Inv is preserved, where Inv is defined to be "Inv(I) is rue
for some I”.

Invariant Inv(I): for every operation O in the cache:
1. there are no write-write edges in the volatile history’s

installation graph from O to operations in I, and
2. every operation P < O (in conflict order) is in Ι or in the

cache.
3. If operation P is in the cache and Q will be reset by installing

O, i.e. Q is in must(O), and Q < P in the installation graph
for the volatile database, then Q is in the cache and there is a
path of write-write edges from O to Q in the write graph.

The first two conditions let us prove that I can be extended by O
when we finally install O in the stable database. The last
condition ensures that if installing O deletes an operation Q from
I , and hence could possibly violate the second condition requiring
that all Q < P are in I or in the cache for all P in the cache, then Q
must be in the cache (and hence will be (re)installed with or after
O). When O is a minimal uninstalled operation in the volatile
state, these conditions imply that I can be extended by O. So
Theorem 1 says that installing O in the stable state will yield an
explainable state.

Three lemmas (given later when discussing rW, and with proofs
in the appendix) show that PurgeCache, both during normal
operation and during recovery, correctly installs operations when
Inv holds, and that its execution preserves invariant Inv. We thus
have:

Theorem 3: PurgeCache preserves the invariant Inv and hence
the recoverability of the stable database.

Capturing a More Precise Flush Ordering

Consider Figure 5 where X and Y need to be flushed together
atomically in W after operation A. Despite this, after operation B,
we can safely flush Y when no uninstalled operations read the
value of X written by A. We recover X by replaying operation B,
whose log record tells how to recreate it from the value flushed to
Y. Hence, recovering X does not depend on the replay of A. We
don’t care what value A wrote to X because it isn’t read by
subsequent uninstalled operations; i.e. it is unexposed.

Figure 5: An example showing that a more precise flush order
is possible than what is captured in W.

Operations

Op B
X ← g(Y)

LOG:
X←g(Y)

Op A
X,Y ←f(X,Y)
LOG: X,Y←

f(X,Y)

Time

For a node n of W, |vars(n)| is monotonically increasing, resulting
in ever larger atomic flushes, until vars(n) is finally flushed. We
can do better by exploiting objects that are not exposed. We alter
the initial transitive closure that generates T (see Figure 3) to
construct a refined write graph rW. The earlier construction of T
lost information that can keep nodes in rW from coalescing,
resulting in more nodes with fewer objects per node.

To ease exposition, we introduce some notation (Table 1 has the
complete set). The set of objects written by operations in ops(n)
of a write graph node n is Writes(n), the set read is Reads(n). The
value written by the last update to object X by an operation in
ops(n) is Lastw(n,X). X will be exposed should a subsequent
operation in another write graph node read Lastw(n,X).

Two salient differences between W and rW are:
• In W, vars(n) = Writes(n). In rW, not all objects in Writes(n)

need be in vars(n). Nonetheless, we install all operations in
ops(n) by flushing vars(n).

• There may be extra edges between nodes n and m in rW to
ensure that certain objects are not exposed or that operations
in must(O) always follow O in the write graph, and these
need not be installation graph edges between operations in
ops(n) and ops(m) (required for graph W).

Figure 6 shows how rW is incrementally constructed from the
uninstalled operations by including them in conflict order. When
presented with a new operation Op, we must assign it to a node m
of rW. Node m may be new or be formed by merging nodes n
whose exposed updated objects (vars(n)) overlap with objects
both written and read by Op., i.e. exp(Op). Objects in notexp(Op)
are not exposed immediately before Op executes. Objects in
exp(Op) have updates that depend on their previous values and
hence are unavoidably “exposed”. They must be flushed at the
same time as objects written by operations that updated them
earlier. Each X in writeset(Op) becomes a member of vars(m).

Operations
Ex(A) Application Execute: reads and writes A
R(A,X) Application Read: reads A,X and writes A
WP(X,v) Application Physical Write: writes X with v
WPL(X) Application Physiological Write: reads and writes X
WL(A,X) Application Logical Write: reads A, writes X
WIP(X,val(X)) CM Identity Write of X with its current value
Operation Op Attributes
readset(Op) Read set of operation Op
writeset(Op) Write set of operation Op
notexp(Op) ‘‘not exposed" objects of Op =

(writeset(Op) – readset(Op))
exp(Op) “exposed” objects of Op =

(writeset(Op) readset(Op))
Write Graph Node n Attributes
ops(n) Set of operations associated with node n
vars(n) Subset of Writes(n) flushed to install ops(n)
Reads(n) ∪ {readset(Op)| Op in ops(n)}
Writes(n) ∪ {writeset(Op)| Op in ops(n)}
Notx(n) (Writes(n) – vars(n)), the “not exposed” objects of n
Lastw(n,X) Last value or SI of X written by an operation of ops(n)
W Write graph of [8]
rW Refined write graph

Table 1: Introduced notation

Only objects in notexp(Op) can also occur in vars(p) for any other
node p and we remove them. Thus, each X is a member of only
one vars(p) for all p. These “blindly” updated objects can now be
recovered independently of their earlier values. Note that there
may now be operations in ops(p) that have write-write conflicts
with Op. Hence, rW may have write-write edges to ensure that
operations in must(op) are installed after op is installed, for every
op. This preserves part three of the cache invariant Inv(I).

We must ensure that objects X in Notx(p) are not exposed when
we flush vars(p) to install ops(p). The value Lastw(p,X) for X in
Notx(p) is not needed for the subsequent update of X but might be
needed by operations in another node q that has operations that
read X. For this, we define edges to p from each node q with an
operation in ops(q) that reads Lastw(p,X). In rW, we call this
edge an inverse write-read edge because it is from a later reader
to an earlier writer. Hence, objects in Notx(p) need not be
preserved by flushing as any operation that depends on these
variables has already been installed before p is installed.

Procedure addop_rW is invoked as operations arrive at the CM.
This procedure is an approximate substitute for the first collapse
in the procedure of Figure 3 for constructing W. Should cycles
arise as a result of addop_rW, we exploit a second collapse, as
was done for the construction of W, to make rW acyclic.

Since we now have an incremental construction for rW, we need
to also make explicit how operations are removed from rW. A
node n of rW is removed when ops(n) are installed via flushing
the objects in vars(n) when n has no rW predecessors. Removal
of n removes all its edges. This never results in new cycles.
Hence, we can remove a node from rW with W’s PurgeCache.

procedure addop_rW(rW,Op))
 /* the incremental version of the first collapse for rW */
 create m in rW by merging nodes n in rW for which

vars(n) �H[S�2S����
 ops(m) = ops(n) 8 {Op}
 vars(m) = vars(n) 8 writeset(Op)
 edges(m) = { edges(n)} �8�/* new read-write edges */�
����������������{ <p,m> | Reads(p) �ZULWHVHW�2S����� `
for each p ≠ m of rW with vars(p) �QRWH[S�2S�� �� ��do
 /* remove “not exposed” objects from vars of other nodes */
 vars(p) = vars(p) - notexp(Op)
 Notx(p) = Writes(p) – vars(p)
 /* Op in must(op) for an op in ops(p), a write-write conflict */
 include edge <p,m> in rW
 for each node q ≠ p of rW do
 if op ∈ ops(q) reads Lastw(p,X), X ∈ (Notx(p) �QRWH[S�2S���
 then
 /* include “reverse” write-read edge to ensure that Notx(p)
 is not exposed when node p has no predecessors */
 include edge <q,p> in rW
 end then
 end do
 end do
 end proc

Figure 6: Computing the refined write graph incrementally
using addop_rW.

The correctness of rW follows from three lemmas that we alluded
to before when discussing W. We state the lemmas here. Their
proofs, which apply equally to W and rW, are given in [9].

Lemma 1: Suppose the database satisfies Inv(I). If v is a
minimal node of the write graph, then I can be extended by
any ordering T of the operations in ops(v) consistent with the
conflict ordering, and hence extend(I,T) is defined.

Lemma 2: Suppose the database satisfies Inv(I), which implies
that I explains the stable database. If v is a minimal node of
the write graph and T is an ordering of the operations in
ops(v) consistent with conflict order, then extend(I,T) explains
the stable database obtained by writing the objects in vars(v)
to the stable database.

From these two lemmas, we know that the new state of the stable
database is explained by the operations that we have installed via
flushing vars(v). It remains to be established that the invariant is
preserved, which essentially tells us that what is in the cache is
acceptable for continuing recovery going forward.

Lemma 3: Suppose the database satisfies Inv(I). Let v be a
minimal node of the write graph and T be some ordering of
the operations in ops(v) consistent with the conflict ordering,
and let I’ = extend(I ,T). Then the database obtained by
writing the objects in vars(v) to the stable database satisfies
Inv(I’).

Then PurgeCache will, when using rW, keep the stable database
recoverable because Theorem 3 is true for rW as well as for W.

4 Cache Management

Multi-object Flush Sets

There is no guarantee that |vars(n)| = 1 for n in rW. As seen in
Figure 7, multiple objects written by one operation, at least
temporarily, are in one atomic flush set. Node 1 of rW initially
has a flush set vars(1) = {X,Y}. Only after operation C is
|vars(1)|= 1. For W, C is always added to ops(1).

Even when all operations write only single objects, cycles can
arise in rW. Consider the sequence (a) Y = f(X,Y); (b) X = g(Y),
(c) Y = h(Y). Operations (a) and (b) initially are in separate rW
nodes with Y preceding X in flush order. When operation (c)
updates Y, X must be flushed before Y with its new value is
flushed. Thus, a cycle involving rW nodes with objects X and Y
has formed. Cycles are collapsed into a single node, bringing
together objects, previously in separate flush sets, into a multi-
object flush set for the resulting node. Note that operation (a) has
the form of an application read, (b) of an application write, and
(c) of an application execute. Hence, these application recovery
operations can potentially lead to cycles that collapse to nodes
with multi-object flush sets.

Cycles arise even more often in write graph W. The CM in [7]
did not have to deal with cycles in W because we precluded
logical write operations like operation (b). Instead of logical
writes, we introduced physical writes X = g(logged(Y)), where the
value for X is read from the log record. With that restriction, no

cycles arose. This was fortunate, as W’s atomic writes sets never
shrink.

As indicated in the example of Figure 7, and unlike with W, a
subsequent operation may remove objects from a multi-object
atomic flush set in rW, reducing it in some cases to a single
object. Two questions arise.

1. How do we know that such an operation will be
forthcoming? Operations have their origin in applications
that are outside of the control of the recovery system.

2. How long do we wait for such an operation? Even if such an
operation eventually arrives, as with temporary files being
deleted, effective cache management is all but impossible.

This is highly unsatisfactory.

Figure 7: The write graphs rW and W that result when an
object becomes non-exposed by a subsequent operation. W
has a single node for X and Y and requires the atomic flushing
of both. However, rW has separate nodes for X and Y and the
non-exposed object X has been removed from vars(1).

Op A
X,Y ←f(X,Y)

LOG: X,Y← f(X,Y)

(a) Operations

Op C
X ← h(Y)

LOG: X← h(Y)

Time

Op B
Z← g(X)

LOG: Z← g(X)

(b) Write Graph W after op C

ops(1) = A,C

vars(1) = X,Y
Writes(1) = X,Y

C writes into
readset(B)

ops(2) = B

vars(2) = Z
Writes(2) = Z

(c) Write Graph rW after C

C writes into
readset(A) and
readset(B);
writeset(A) overlaps
writeset(C)

Inverse W-R,
B reads version
of X from A
not exposed by
C’s write

ops(3) = C

vars(3) = X
Writes(3) = X

ops(2) = B

vars(2) = Z
Writes(2) = Z

ops(1) = A

vars(1) = Y
Writes(1) = X,Y

Cache Manager Initiated Writes

The cache manager can, via its own actions, cope with n having
|vars(n)| > 1 without needing to atomically flush multiple objects.
It initiates an identity write WIP(X) on an object X in vars(n).
WIP(X) ‘‘writes" the object without changing it and is logged as a
physical operation by writing the value of X to the log. This
produces a new node m with ops(m) = {WIP(X)} and vars(m) =
{X}. Importantly, it removes X from vars(n). No cycles are
introduced as m will follow other nodes in rW. It does not
precede any as Reads(m) is empty, meaning that WIP(X) has no
installation graph successors.

We can repeat this with additional identity writes, until |vars(n)|
= 1. Once n has no predecessors, the single object can be
atomically flushed, installing the operations of ops(n). This
works for any node n with |vars(n)| > 1, and hence works with
arbitrary log operations. Although only a single object is flushed,
all operations of ops(n) are installed. (Indeed, we can even reduce
|vars(n)| to zero.) Subsequent values for the objects in Notx(n),
which are not flushed, can be recovered from the log.

Flushing both installs operations and makes the flushed objects
clean (version in the stable state is the same as the cached
version). Installation alone does not make stable database and
cached versions the same.. Thus, install and flush of an
unexposed object leaves that object dirty in cache. The cached
version has been updated by an operation that follows the
operations being installed. In Figure 7, operation C has updated
the cached value of X and this value continues to be needed after
node (1) is installed. The cached value has not been flushed and
so is not available from the stable database. Therefore, we
continue to require that an object be clean before it can be
dropped from the cache to protect our ability to access the latest
version of the object, which is needed when subsequent
operations read the object.

We have resorted here to logging physical writes to effectively
manage the cache when |vars(n)| > 1. However, previously,
when avoiding flush cycles by precluding logical writes, all writes
were physical. Now, we log physical writes only for multi-object
atomic flush sets. Even then, we can avoid the need to log at least
one object of the set with a physical write. Further, we enable
multiple updates to accumulate in each object before we log or
flush it. Hence, as is common in database systems, the cost of
flushing (and logging) the object is shared among the several
updating operations, a substantial saving.

Atomic Flush

It is possible to accomplish atomic flushing of objects in a couple
of different ways. So, one might ask, why have we gone to such
trouble to try to avoid this. We examine two traditional atomicity
techniques here.

1. Shadows: Shadows (used by System R [3]) separate flushing

into (i) writing object values to the disk and (ii) including
these values in the “official” stable system state (called
“propagation” in [5]). When all values are written, one
atomically installs them by “swinging” a pointer with a
single atomic disk write. With shadows, the entire stable

state needs to be shadowed since any part of it might need to
be atomically flushed. Shadows relocate objects every time
they are written, destroying access sequentiality. Database
systems almost universally use logging with update in place,
necessitating a different approach to atomic flushing.

2. Flush “transactions”: Database systems achieve atomicity for
a set of activities by wrapping them in a transaction. A
failure before commit means that none of the activities have
“happened”. After commit, all of the activities are
guaranteed to have happened. So we can achieve flush
atomicity by writing the values of the objects to be flushed
all to the log as part of a flush transaction, then writing a
commit record for this transaction. Once committed, we can
then overwrite the states of the flushed objects in the stable
database with the logged values.

To realize a flush transaction, it is important that the states of the
objects involved in the transaction be “frozen” in a “flush
transaction” consistent state. Hence, we need to protect them
from change during the execution of the flush, which includes
both logging and subsequently flushing the objects. This kind of
consideration is why System R [3] quiesced the system, i.e.
paused execution by refusing new actions and completing existing
actions, until an action consistent checkpoint was completed.

In terms of I/O costs, each object in the atomic flush set needs
to be written twice. The first time, it is written to the log. The
log is forced to commit the flush transaction. Then the objects
must be updated in place by overwriting them with the values
just logged.

Comparing Costs

CM initiated identity writes improve upon flush transactions in
two ways.
1. System interruption is avoided. There is no requirement to

quiesce the system to ensure that “flush transaction”
consistent values are written to the stable system state.
Rather, we can write values one at a time. Even a
subsequent update of an object that is the subject of the CM
initiated write can be handled as a normal part of CM
operation. So values need be “frozen” only during the time
they are actually being written, the same requirement that
database systems normally have when managing the cache.

2. I/O cost is less. Using CM identity, one object need not be
logged prior to being flushed, since single object flushing
doesn’t need extra logging. We expect that most multi-
object atomic flush sets will be small, mostly of size two,
where saving one I/O is important. In this case, we write
log two object values when flushing atomically, but only one
object value when using CM initiated writes. Further, the
normal system operations might remove objects from
vars(n), avoiding even more I/O’s. Hot objects will need to
be retained in the cache in any event. Hence, we can decide
to merely install operations on them via logging, without
flushing them immediately, further reducing I/O cost.

An additional benefit to cache manager initiated writes is that we
can treat these operations in the same way that we treat regular
operations, not as a special mechanism.

5 Recovery REDO Tests

To recover the stable database after a crash, the recovery process
scans the log sequentially from the redo scan start point (log start
in [8]) to the end of log. It must determine which operations to
replay via the REDO test of section 2. REDO tests each operation
when scanned. If REDO returns true, the operation is re-executed
using the state S formed from the pre-crash stable state as updated
by prior redo recovery. We face three related difficulties in to
construct an effective REDO test for logical log operations.
1. Determining whether an operation is installable when write-

write edges between log operations can exist.
2. Avoiding redo of operations in the installed set I, especially

when re-execution is costly.
3. Determining if an operation is in I when it may be installed

without flushing its entire writeset, as permitted by rW.
We want to exploit the explanation of the after-crash state that has
the largest set L of installed operations, and only redo operations
in H – L. While determining L is not always feasible, we desire
to use as large an installed set as possible to explain the stable
state. Hence, if we can determine that an operation is in L, we
want REDO to return false and the operation to be bypassed.

SI-based REDO Tests

We focus on REDO tests based on state identifiers (SI’s).
(Frequently log sequence numbers (LSNs) are used as SI’s.) One
SI, denoted the vSI, is stored with each object, and another, the
lSI, with each log record. For physiological operations, an update
of X by an operation with a log record whose lSI is k sets X’s vSI
to k. SI’s increase monotonically. If X’s vSI ≥ lSI, the operation
with lSI = k is in L and we bypass it. Otherwise, we redo it. This
is an effective REDO test.

The SI based scheme can easily be extended to handle logical log
operations when using write graph W. We test SI’s to determine
whether an Op is installed, not for applicability. We write vSI’s
for each object in writeset(Op) and test objects in writeset(Op) to
determine whether they contain Op’s results. For W, the SI test
returns the same result for all objects in writeset(Op) because we
atomically install writeset(Op). If vSI ≥ lSI for any object in
writeset(Op), REDO returns false, the operation is in L and we
bypass it. If vSI < lSI, Op is uninstalled (i.e., it is in H - I) and is
re-executed, with objects in writeset(Op) set to their Op results.

Correct redo recovery requires only that exposed objects have
appropriate values. A REDO test can return false, meaning redo is
unnecessary for operations whose writeset’s are entirely
unexposed. Consider a system that only logs physical writes
WP(X,logged(v)) where X is updated from the logged value v. We
could safely redo all such operations on the log, as they are
always applicable and installable. Better would be a REDO ``is-
installed" test to redo only operations that pass our SI test. Even
better is to bypass operations on objects until their results are
exposed. When all logged operations are blind writes, this means
doing nothing until we find the last write for each object. Indeed,
media recovery is sometimes performed using a log in which all
earlier operations have been deleted [4]. This treats all operations
that write to unexposed objects as already installed, regardless of
the SI test result.

In rW, not all of writeset(Op) need actually be flushed to install
Op. So the SI test might not return the same result for all objects
in writeset(Op). However, because we guarantee atomic
installation (not atomic flush), if vSI ≥ lSI for any object in
writeset(Op), then the operation is manifestly installed. Hence,
other objects in writeset(Op) with vSI < lSI are established as not
exposed.

The traditional SI REDO test treats all objects with vSI < lSI as if
they were exposed. To cope with log operations whose writeset’s
may be unexposed and to exploit the potential substantial gain by
treating these operations as installed, we need a REDO test for
operation Op of the following form:
• if an object in writeset(Op) has vSI < lSI and is exposed,

return true, i.e., redo Op;
• otherwise, return false.
Determining whether an object is exposed requires testing more
than just its vSI, however.

Generalized Recovery SI’s

All of writeset(Op) may be unexposed. When this occurs, it is
possible that vSI < lSI for all variables in writeset(Op) but for Op
to nonetheless be in L. This is the case trivially in our physical
write example above. We want REDO to return false in this case.
While unexposed variables can be set to arbitrary values, and
redoing Op may not compromise recoverability, we want to avoid
the cost of re-execution. This is particularly important for
expensive operations like application execution or file writes.

Hence, we introduce the recovery SI (rSI) for an object (in
ARIES, called a recovery LSN or rLSN). An rLSN for a page
“indicates from what point in the log there may be updates which
are, possibly, not yet in the nonvolatile storage version of the
page" [11]. There is an rSI for each recoverable object. With
physiological operations, which do not have inter-object flush
dependencies, the vSI of the value of an object that is stored in the
stable state indicates the last operation installed for the object.
After a cached object is flushed, its rSI is reset to the SI of the
first update after the flush.

LSN’s across all objects increase monotonically with each update,
not just on a per object basis. ARIES keeps an rLSN’s for each
dirty object in the CM’s dirty pages (dirty objects) table. The
minimum rLSN identifies the redo scan start point. All operations
preceding this minimum rLSN are installed. All uninstalled
operations are in the tail of the log following this point. This
integrates well when LSN's are used because an LSN identifies a
location in the log. Our REDO test can use LSN’s as SI’s, but
requires only that an object’s SI’s increase monotonically.

ARIES writes to the log the identities of dirty pages and their
rSI’s in its checkpoint record. Before redo recovery, the latest
checkpoint record is retrieved. Its dirty pages are the only pages
with uninstalled updates at the time of the checkpoint. Log
operations that precede the checkpoint and that involve pages not
in the checkpoint record are all installed and hence can be
bypassed. This more sophisticated REDO test uses the
checkpoint rSI’s as an adjunct to the SI test. However, it only
optimizes the SI test whose result could always be used, though at

the additional cost of reading a page. It does not test if an object
is exposed.

We use an rSI as part of a REDO test that combines an ‘‘is
exposed" test with an ‘‘is installed" test. (Operations with
unexposed results are “installed”.) An object's rSI is the lSI of its
earliest uninstalled operation (whose results are exposed). The
REDO test becomes
• if Op’s lSI ≥ max(rSI,vSI+1) for objects in writeset(Op), Op

is uninstalled and some result value is exposed. Return true;
• otherwise, return false.
Below we discuss how to maintain rSI’s during normal execution.

We generalized the rSI definition to exploit the fact that all
operations in ops(n) are installed when vars(n) are flushed. And
this is so even when there are objects in Notx(n) that are not
flushed. Objects in Notx(n) are unexposed because all operations
that might have read their values must be installed because of
inverse write-read edges. The rule then is that we advance the rSI
of an object exactly when we install operations that write it,
whether or not the object is flushed during installation. Thus, we
advance the rSI’s of all objects in Writes(n) = vars(n) 8 Notx(n)
when vars(n) is flushed. An object X’s rSI is set to the lSI of the
first uninstalled operation to update X. This is usually the lSI of
the first operation with an update that follows the last update of an
object in Notx(n), as it is typically the subsequent operation’s
writing to X that make it unexposed. When X’s lifetime is
terminated, as in a delete, rSI becomes the lSI of the delete and
the object can be removed from the object table. Hence, for a
dirty object, rSI ��lSI of the first uninstalled operation to write X,
as required in the REDO test.

Consider again the example in Figure 7. If node (1) is installed
via the flushing of Y, X is also installed and given an updated rSI
derived from it’s being written by operation A, although X was
not itself flushed. A couple of points are worth making:

• The rSI for X is not advanced when operation C is
encountered and logged, although prior values of X are no
longer needed to recover the latest value for X. Prior values
of X may still be needed because other operations read them.
In Figure 7, such a value of X has been read by operation B.

• The rSI for X is advanced when node (1) is installed because
objects in Notx(1) are now guaranteed to be not exposed.
Hence, their values are not needed by any other operation.
X’s rSI is then set to the lSI for operation C.

Logging and Recovery using rSI’s

We want to perform our REDO test on the log records
encountered during the redo recovery scan and only replay
operations uninstalled in I, our explaining installed set, i.e. with
lSI ≥ max(rSI,vSI+1). To use rSI’s during recovery requires some
action preliminary to performing a redo recovery pass. At a
minimum, we retrieve a version of the object table (a dirty object
table) that could, as described in ARIES, form a part of our
recovery log checkpoint record. Further, a recovery analysis pass
preceding the redo pass permits us to exploit the logging of
operation installation to generate a dirty object table that reflects
the state of dirty objects as of a time close to the crash.
Importantly, it lets us remove clean objects from the dirty object
table, and to advance rSI’s of dirty objects.

The situation is particularly simple for physiological operations.
By logging the flush of an object at the point when we know the
flush has successfully completed, we are recording not only that
the object is now clean but also that prior operations updating the
object are installed. During the analysis pass of recovery, when
we encounter a “flush” log record, we remove the object from the
dirty objects table. If another operation that writes the object is
encountered, we return the object to the dirty objects table and set
the rSI of the object to the lSI for this operation. Thus, the rSI
remains equal to the lSI of the first uninstalled operation. This
new rSI helps during redo recovery with our REDO test. Logging
object flushes has its origin in recovery lore. Flushes can be
lazily logged after the flush as the vSI of the object is checked by
REDO should an update for the object with an lSI greater than the
rSI be present on the log.

In rW, flushing objects in vars(n), installs operations in ops(n).
Flushing is not needed for the unexposed objects of Notx(n). We
capture these opportunities to advance object rSI’s by logging the
installation of each node n of rW. In that log record, in addition
to identifying the objects of vars(n) and their rSI’s, we identify
objects in Notx(n) and their rSI’s. Recall that the rSI for an
unexposed object is the lSI for the "blind" write (or delete) that
follows it. This does for unexposed and exposed objects updated
by logical operations what logging of flushes does for
physiological operations.

It is possible that ops(n) has been installed but the log record
describing the installation did not reach the stable log before the
system crashed. Thus, we only have approximate information
about rSI’s during recovery. Sometimes checking vSI’s of objects
in writeset(Op), as with physiological operations, will prevent a
needless redo of Op. We check the vSI’s to ensure that we do not
reset objects that are exposed. Operations prevented from being
re-executed in this way are manifestly installed. But, all results of
Op can be unexposed but Op can be in L (the largest set of
installed operations explaining state S). Unfortunately, REDO will
indicate that Op is uninstalled. Hence, when REDO returns true,
the operation involved may be:
1) in H - I for an I that explains S. The operation is then

applicable and installable. Re-execution will increase
recovery time, but it will not lead to a recovery failure.

2) installed in all I that explain S. The operation may not be
applicable as only a minimum uninstalled operation is
guaranteed to be applicable. This re-execution may produce
erroneous results. If an operation re-execution
a) only updates the original writeset we do not discover a

problem, but no subsequent redo is affected as all
objects in writeset(Op) are unexposed.

b) attempts to update more than the original writeset, we
can detect this and terminate the redo.

c) raises an exception when executing against inapplicable
state, execution is terminated.

We “expand” REDO to include a trial execution of the operation,
where if the execution produces errors b) and c), it is "voided". In
no case are changes made to exposed objects. Hence, we redo all
operations where the SI REDO test returns true. We can and do
re-execute unneeded operations during recovery. Because only
the installation(s) just before a crash may be missed, the unneeded
extra work will usually be modest.

Recovery optimization using rSI’s and logging installations is
extremely important when we extend recovery to non-traditional
objects such as application state and files. It should usually be
possible to avoid both application re-execution and the writing of
large files given that both frequently have relatively short
lifetimes. Many objects named in log records will, in fact, be
terminated or deleted, and so will not be exposed. Hence, one can
treat all their operations as installed (i.e. the REDO test returns
false) even when they have not been flushed recently, or ever.

During recovery, the same conditions on cache flushing apply as
during normal operation. Hence, it is necessary to redo
operations and cache their results. Only when the re-constructed
write graph permits their flushing can operation results be
installed. It is possible to avoid reconstructing the write graph by
flushing operations as they are completed, exactly as is the case
during normal execution. However, it is usually preferable to
avoid the frequent I/O and rely on the write graph to guide a more
efficient flushing regime.

6 Summary
Our goal has been to promote recovery technology using more
general log operations than the now state-of-the-art physiological
operations of [4,11]. Logical logging can reduce dramatically the
logging required for recovery by using the stable state as a source
for values to be exploited during recovery. Physiological logging
uses only prior values of the object written by an operation.
Logical logging permits many values from the stable state to be
used in updating several values per logical operation.

With logical operations, new uses of recovery are possible at
reasonable normal execution cost. Our previous paper [7] showed
how to provide application recovery when application read
operations were handled as logical operations, greatly reducing
the cost of logging reads. However, logical operations can result
in cyclic flush dependencies, requiring the atomic flushing of
multiple objects, a major complication. Write graph W is
inadequate to avoid this, as once objects need to be flushed
together atomically, there is no way to flush them separately.

In [7], we avoided cyclic flush dependencies by restricting
ourselves solely to logical reads, logging writes as physical
operations, WP(X,v). This is expensive as the value v that updates
X needs to be logged. The technology introduced in this paper
deals with logical operations in general. Hence, it can be used to
reduce the cost of handling application write operations by
permitting logical write operations WL(A,X) where the source for
X’s value is the output buffer of the recovered state A. Logging
WL(A,X) does not require writing X’s new value to the log. This
dramatically reduces the normal execution cost of logging
application writes.

Because of the subtleties of recovery, we have ranged over a
number of subjects.

The installation graph imposes an operation installation order.
From it, we derive a write graph that the CM uses to order
flushing to keep the system state recoverable. However, the write
graph W of [8] did not capture the flush requirements with
sufficient precision for effective cache management. Therefore,
in section 3, we introduced a refined write graph rW. rW does not
require that unexposed objects be flushed in order to install earlier

operations that wrote them. Further, the CM, via generation of
identity write operations WIP(X,val(X)), can separate objects into
distinct rW nodes, enabling them to be flushed one at a time. As
described in section 4, each identity write permits us to remove its
updated object from a node’s atomic flush set. The identity write
puts the object into a node where it could be flushed by itself.
Repeating such writes reduces the number of objects in an atomic
flush set to only one that can then be flushed. A bonus is that this
enables operations to be installed in the stable database without
actually flushing some of their updated objects.

Recovery requires a REDO test to determine when an operation
needs to be re-executed. Traditional LSN-based tests require that
an operation write a single object and operation installation
required flushing the object. We generalized this in section 5 to
state identifier (SI) based tests that work for arbitrary operations.
A new REDO test exploited write graph rW, where an operation
can be installed even when (part of) its writeset is not flushed.
This required that we use a form of recovery LSN called an rSI as
part of the test.

Recovery for applications or files can be expensive. Since
applications and files are frequently only transient objects,
executing and disappearing, not recovering them when they are
already deleted or not exposed is a significant recovery
optimization. Our new REDO test, based on rW and generalized
rSI’s, accomplishes that. Using a separate analysis pass, it
permits us to identify and redo only operations with exposed
updates.

Bibliography

[1] Bernstein, P. Goodman, N. and Hadzilacos, V. Recovery Algorithms

for Database Systems. IFIP World Computer Congress, (Sept. 83)
799-807.

[2] Crus, R. Data recovery in IBM Database 2. IBM Systems Journal
23,2 (1984) 178-188.

[3] Gray, J., McJones, P., et al. The Recovery Manager of the System R
Database Manager. ACM Computing Surveys, 13,2 (June 1981) 223-
242.

[4] Gray, J. and Reuter, A. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann (1993) San Mateo, CA

[5] Haerder, T. and Reuter, A. Principles of transaction-oriented
database recovery. ACM Computing Surveys 15,4 (Dec. 1983) 287-
317.

[6] Kumar, V. and Hsu, M. (eds.) Recovery Mechanisms in Database
Systems. Prentice Hall, NJ 1998

[7] Lomet, D. Application recovery using generalized redo recovery.
Int’l. Conf. on Data Engineering , Orlando, FL (February, 1998)
154-163.

[8] Lomet, D. and Tuttle, M. Redo recovery from system crashes. VLDB
Conference, Zurich, Switzerland (Sept. 1995) 457-468.

[9] Lomet, D. and Tuttle, M. A Formal Treatment of Redo Recovery
with Pragmatic Implications. Tech. Report (in preparation).

[10] Lomet, D. Media Recovery When Using Logical Log Operations.
(submitted for publication).

[11] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P.
ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Trans.
On Database Systems 17,1 (Mar. 1992) 94-162.

[12] Strom, R. and Yemini, S. Optimistic Recovery in Distributed
Systems. ACM Trans. On Computer Systems 3,3 (Aug. 1985) 204-
226.

